flink实时项目电商用户行为分析(5)---实时流量统计之UV统计之布隆过滤器实现

1.知识点

  • scala输入输出样例类
  • keyBy并行度为1计算UV的技巧

map(data => ("uv", data.userId))..keyBy(_._1)

  • keyBy并行度>1计算UV的技巧

自定义MapFunction,随机自定义key+"uv"

Random.nextString(10) + "uv"
  • WindowedStream.trigger的使用

         trigger触发器,每来一条数据直接清空窗口,放到redis进行计算

  •   trigger返回WindowedStream,继续调用process(ProcessWindowFunction)
  • WindowedStream.process()的使用

windowStream调用接口

  • 布隆过滤器的实现

2.业务目标

滚动输出最近1小时内的PV

窗口:1小时

指标:点击量

3.流程心法

总流程:创建输入输出类--->执行环境--->transform转换--->各类窗口函数的调用

主Object:

  1.创建执行环境,设置时间语义,并行度等

  2.transform api  map转换为输入样例类,并设置watermark

  3.key 定义成常量"v",那么keyBy就分为同一组,如果并行则可以自定义mapFunction

  4.实现trigger

  5.实现processWindowFunction

4.模块详解

<think>好的,用户的问题是关于如何利用Redis的发布-订阅机制实现事件驱动架构,以便在数据变更时通知Flink更新布隆过滤器。我需要结合用户提供的三个引用内容来给出解决方案。首先,用户提到的引用3中有一个自定义的布隆过滤器实现,可能涉及到如何将新的元素加入布隆过滤器。然后,引用1和引用2讨论了在Flink中使用Redis和布隆过滤器进行UV统计的场景,特别是触发器如何触发窗口处理,并将状态存储在Redis中。 用户的需求核心在于数据变更时触发Flink更新布隆过滤器。Redis的发布-订阅机制可以用来在数据变更时发布消息,而Flink需要订阅这些消息来更新本地的布隆过滤器。需要考虑以下几个步骤: 1. **数据变更时发布消息到Redis频道**:当有新的用户或数据需要加入布隆过滤器时,比如新用户访问导致需要去重,应用系统应在更新Redis中的布隆过滤器状态后,通过PUBLISH命令发送变更事件到指定频道。 2. **Flink订阅Redis频道**:Flink作业需要建立一个Redis的订阅客户端,监听特定的频道。当有消息发布时,触发相应的处理逻辑。不过,Flink本身没有内置的Redis Source,可能需要自定义SourceFunction或者使用RichAsyncFunction来连接到Redis并订阅频道。 3. **更新布隆过滤器状态**:接收到订阅的消息后,Flink作业需要解析消息内容,获取新增的数据(如用户ID或IP),并将其添加到当前的布隆过滤器中。这里需要考虑如何在Flink中维护和更新布隆过滤器的状态,可能需要使用状态后端(如ValueState)来保存布隆过滤器的位数组。 4. **结合窗口处理逻辑**:根据引用1,Flink在处理窗口时会使用触发器来触发计算,并将结果存储到Redis。在更新布隆过滤器后,可能需要重新处理窗口中的数据或者调整后续的数据处理逻辑,确保新的布隆过滤器状态生效。 需要注意的问题包括:如何保证消息的可靠传输,避免数据丢失;如何处理并发情况下的布隆过滤器更新;以及如何高效地在Flink中维护和序列化布隆过滤器的状态。此外,引用3中的布隆过滤器实现类需要被序列化并在Flink算子中使用,可能需要调整其结构以适应分布式环境。 最后,用户可能需要具体的代码示例,比如如何实现Redis的订阅和消息处理,以及如何与Flink的状态管理结合。需要确保代码示例符合用户提供的引用中的结构,比如使用Redis连接和布隆过滤器的hash方法。</think>### 如何通过Redis发布订阅实现Flink布隆过滤器动态更新? #### 一、实现原理 通过Redis的发布订阅机制,在数据变更时触发事件,将变更内容推送至Flink任务,动态更新布隆过滤器的位数组状态,实现**事件驱动架构**下的实时去重[^2]。核心流程如下: 1. **数据变更发布端** 当外部系统(如用户注册服务)产生新数据时,将变更内容(如新增用户ID)通过`PUBLISH`命令发送至Redis频道`bloom_filter_updates`。 ```bash PUBLISH bloom_filter_updates "new_user_id:12345" ``` 2. **Flink订阅消费端** Flink使用`RedisSource`订阅该频道,监听变更事件。通过`RichAsyncFunction`异步处理消息,避免阻塞主线程[^1]。 3. **动态更新布隆过滤器** 接收到消息后,解析出新增数据,调用布隆过滤器的`hash`方法计算位偏移量,更新本地状态和Redis中的位数组副本[^3]。 #### 二、关键代码实现 ```java // Flink订阅Redis频道的SourceFunction public class RedisPubSubSource extends RichSourceFunction<String> { private JedisPubSub jedisPubSub; private volatile boolean isRunning = true; @Override public void run(SourceContext<String> ctx) { jedisPubSub = new JedisPubSub() { @Override public void onMessage(String channel, String message) { ctx.collect(message); // 将消息传递至下游 } }; new Jedis("localhost").subscribe(jedisPubSub, "bloom_filter_updates"); } @Override public void cancel() { jedisPubSub.unsubscribe(); isRunning = false; } } // 更新布隆过滤器的ProcessFunction public class BloomFilterUpdater extends ProcessFunction<String, Void> { private transient ValueState<MyBloom> bloomState; @Override public void open(Configuration parameters) { ValueStateDescriptor<MyBloom> descriptor = new ValueStateDescriptor<>("bloom", MyBloom.class); bloomState = getRuntimeContext().getState(descriptor); } @Override public void processElement(String message, Context ctx, Collector<Void> out) { MyBloom bloom = bloomState.value(); if (bloom == null) bloom = new MyBloom(1L << 27); String newData = message.split(":")[1]; // 计算哈希并更新位数组(需实现MyBloom.add()方法) bloom.add(newData); bloomState.update(bloom); // 同步更新Redis中的布隆过滤器(参考引用3的位操作) try (Jedis jedis = new Jedis("localhost")) { jedis.setbit("uv_bloom", bloom.hash(newData, 31), true); } } } ``` #### 三、注意事项 1. **状态一致性** 需使用`Checkpoint`机制保证Flink本地状态与Redis存储的位数组一致,防止任务失败时数据丢失。 2. **性能优化** - 使用`Jedis管道`批量更新Redis位操作 - 设置布隆过滤器状态为`TTLState`,定期清理过期数据 3. **动态扩容** 若布隆过滤器容量不足,需根据引用3中的`cap`参数动态扩容,并广播新容量至所有Flink任务节点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值