知识图谱
文章平均质量分 86
知识图谱相关论文
Jiawen9
从来不自诩有不带偏见看待事物的所谓眼界和宽容,但会一直坚守接触之后能重新认识人和事物的勇气。
展开
-
论文阅读《ICDE2023:Relational Message Passing for Fully Inductive Knowledge Graph Completion》
本文中,作者提出了一种名为RMPI的新方法,它使用一种新的关系消息传递网络来进行完全归纳KGC。它直接在关系之间传递消息,以充分利用用于子图推理的关系模式,使用图转换、图修剪、关系感知的邻域注意力、寻址空子图等新技术,并可以利用KG的本体模式中定义的关系语义。原创 2023-07-27 16:17:50 · 1694 阅读 · 0 评论 -
论文阅读《ESSWC2018:Modeling Relational Data with Graph Convolutional Networks》
本文引入了关系图卷积网络(R-GCNs),并将其应用于两个标准的知识库完成任务: 链接预测和实体分类。通过使用GNN编码器模型来丰富用于链接预测的因子分解模型DistMult,可以显著改善链接预测的结果。R-GCN可以视为是一个自动编码器,产生实体潜在特征的表示。R-GCN是首次将GCN用于关系数据建模。原创 2023-07-26 09:39:35 · 660 阅读 · 0 评论 -
论文阅读《Does William Shakespeare REALLY Write Hamlet? Knowledge RepresentationLearning with Confidenc》
三元组置信度开山之作-AAAI2018原创 2022-08-07 11:38:06 · 466 阅读 · 0 评论 -
论文阅读《Knowledge graph quality control- A survey》
论文阅读《Knowledge graph quality control- A survey》原创 2023-04-25 10:41:53 · 101 阅读 · 0 评论 -
论文阅读《2022ICLR:Are Message Passing Neural Networks Really Helpful for Knowledge Graph Completion? 》
基于 GNN 的模型带来的改进归因于增强的信息聚合过程。因此目前关于为 KGs 开发更好的 GNN 的研究仍然主要集中在推进信息聚合过程。作者发现:基于 GNN 的模型中的信息聚合过程并不是所报告的KGC性能改进的最关键原因。具体来说,作者用简单的多层感知器(MLPs)替换了几个最先进的以 KGC 为重点的GNN模型中的信息聚合过程,并在各种数据集和实现中实现了与其相应的基于 GNN 的模型相当的性能。结果表明,评分和损失函数确实有更强的影响,而信息聚合过程几乎没有贡献。原创 2023-07-21 14:03:04 · 754 阅读 · 0 评论 -
论文阅读《2022WWW:Rethinking Graph Convolutional Networks in Knowledge Graph Completion》
KCN在建模图结构方面很有效。基于GCN的KGC模型通常使用编码器-解码器框架,GCNs和KGE模型分别充当编码器和解码器。许多基于GCN的KGC模型虽然引入了额外的计算复杂度,但未能超越最先进的KGE模型?作者发现GCNs中的图结构并没有对KGC的性能有显著提升,相反实体表示的转换为性能带来提升。本文提出的LTE-KGE模型带来与KGE模型相似的性能提升同时避免了GCN聚合中繁重计算负载。原创 2023-07-21 14:31:19 · 196 阅读 · 0 评论 -
论文阅读《2020ICML:Inductive Relation Prediction by Subgraph Reasoning》
知识图谱中关系预测的主要范式涉及实体和关系的潜在表示(即嵌入)的学习和操作。然而,这些基于嵌入的方法并没有显式地捕获知识图谱背后的组合逻辑规则,并且它们仅限于直推式设置,在直推式设置中,实体的全部集合必须在训练期间已知。本文提出了一种基于图神经网络的关系预测框架GraIL,它在局部子图结构上进行推理,并具有很强的归纳偏差来学习实体独立的关系语义。原创 2023-07-21 15:11:08 · 679 阅读 · 0 评论 -
论文阅读《AAAI2021:Topology-Aware Correlations Between Relations for Inductive Link Prediction in Knowle》
本文中,提出了一种新的归纳推理方法,即TACT,它可以有效地利用知识图中关系之间的拓扑感知相关性。具体来说,TACT从相关模式和相关系数两个方面对语义相关关系进行建模。将所有关系对分为7个类别不同的拓扑结构对应不同的关联模式。然后,将原始知识图转换为关系相关图(Relational Correlation graph, RCG),其中节点表示关系,边缘表示原始知识图中任意两个关系之间的关联模式。在RCG的基础上,提出了一种关联网络(RCN)来学习不同模式的相关系数,用于归纳链路预测。原创 2023-07-21 15:20:05 · 191 阅读 · 0 评论 -
论文阅读《Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods》
知识图谱细化综述-from 2016 semantic web原创 2022-10-23 16:42:09 · 1435 阅读 · 1 评论 -
论文阅读《How Does Knowledge Graph Embedding Extrapolate to Unseen Data: A Semantic Evidence View》
知识图谱嵌入最新论文-2022AAAI原创 2022-10-31 15:50:20 · 789 阅读 · 2 评论 -
论文阅读《A Re-evaluation of Knowledge Graph Completion Methods》
在不同评估方案下提供一致性能的图谱嵌入方法- ConvE, RotatE 和 TuckER。原创 2023-03-30 15:09:19 · 342 阅读 · 0 评论 -
论文阅读《Triple Trustworthiness Measurement for Knowledge Graph》
知识图谱三元组质检,accepted by www2019原创 2022-10-01 10:10:11 · 769 阅读 · 1 评论 -
论文阅读《What is Normal, What is Strange, and What is Missing in aKnowledge Graph》
KGIST通过归纳总结统一表征在KGs中什么是正常的、什么是奇怪的、什么是缺失的。原创 2023-03-30 15:24:07 · 452 阅读 · 1 评论