adaboost算法

clear;
clc;
tic;
zhen=6;
fu=10;
load('Sag.mat')
Y(1,1:zhen)=1;
Y(1,zhen+1:zhen+fu)=0;


%初始化权重,按英文上的来的
W=zeros(1,zhen+fu);
for i=1:size(Y,2)
    if (Y(i))
        W(i)=1/(2*zhen);
    else
        W(i)=1/(2*fu);
    end
end


%T轮训练
 a=1; 
 while(a<=200)
    %标准化权重
    NW=sum(W);
    W=W/NW;
    num=0;
    minerr=1;
    for j=1:size(F,2)  
        %取出一列
        f=F(:,j)';
        [f_sort, I] = sort(f);%排序并记下标记
        W_sort = W(I);%排序后权重,同时更新
        Y_sort = Y(I);%排序后标签
        
        Tz= Y_sort * W_sort'; %正样本权重和,T+
        Sz= cumsum( Y_sort .* W_sort);%当前样本之前的正样本权重和
        Tf= (1-Y_sort) * W_sort';%负样本权重和,T-
        Sf= cumsum( (1-Y_sort) .* W_sort);%当前样本之前的负样本权重和
        
        PN_cum1 = ( (Tf-Sf) + Sz); %公式e = min S+ + (T ? ? S?), S? + (T + ? S+)
        PN_cum2 = ( (Tz-Sz) + Sf);
        
        [min1,thresh_I1]= min(PN_cum1);
        [min2,thresh_I2]= min(PN_cum2);
        
        if (min1<min2)
            thresh_I=thresh_I1;
            PN_cum=PN_cum1;
        else
            thresh_I=thresh_I2;
            PN_cum=PN_cum2;
        end
        thresh = ( f_sort(thresh_I));
        p = 2 *( (Sz(thresh_I)>Sf(thresh_I)) -0.5);%判断方向
        Result=(p*f<p*thresh);%直接f<thresh
        error=sum(abs(Result-Y).*W);%每一列的错误率
        if(error<minerr)
            minerr=error;
            thresht=thresh;
            pt=p;
            It=j;
            Resultt=Result;
            num=num+1;
        end
        
    end
    beta=minerr/(1-minerr);
    W(find(Y==Resultt))=W(find(Y==Resultt))*beta;%分类正确就更新权重
    
    if(a==1)
        P(1)=pt;%记录方向
        Thresh(1)=thresht;%记录阈值
        Err(1)=minerr;%记录错误率
        alpha(1)=log(1/beta);%记录贝塔t
        tz(1)=It;
        a=a+1;
    end
    
    if(a>1 && num~=0)
        if(tz(a-1)~=It)      
            P(a)=pt;%记录方向
            Thresh(a)=thresht;%记录阈值
            Err(a)=minerr;%记录错误率
            alpha(a)=log(1/beta);%记录贝塔t
            tz(a)=It;
            a=a+1;
        end
    end
    
    
 end
save('threshSag.mat','Thresh')
save('pSag.mat','P')
save('tzSag.mat','tz')
save('alphaSag.mat','alpha')
save('ErrSag.mat','Err')
toc
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值