spark系列二:load和save

对于Spark SQL的DataFrame来说,无论是从什么数据源创建出来的DataFrame,都有一些共同的load和save操作。load操作主要用于加载数据,创建出DataFrame;save操作,主要用于将DataFrame中的数据保存到文件中。
Java版本
DataFrame df = sqlContext.read().load("users.parquet");
df.select("name", "favorite_color").write().save("namesAndFavColors.parquet");
Scala版本
val df = sqlContext.read.load("users.parquet")
df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
也可以手动指定用来操作的数据源类型。数据源通常需要使用其全限定名来指定,比如parquet是org.apache.spark.sql.parquet。但是Spark SQL内置了一些数据源类型,比如json,parquet,jdbc等等。实际上,通过这个功能,就可以在不同类型的数据源之间进行转换了。比如将json文件中的数据保存到parquet文件中。默认情况下,如果不指定数据源类型,那么就是parquet。
Java版本
DataFrame df = sqlContext.read().format("json").load("people.json");
df.select("name", "age").write().format("parquet").save("namesAndAges.parquet");
Scala版本
val df = sqlContext.read.format("json").load("people.json")
df.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
Spark SQL对于save操作,提供了不同的save mode。主要用来处理,当目标位置,已经有数据时,应该如何处理。而且save操作并不会执行锁操作,并且不是原子的,因此是有一定风险出现脏数据的。

Save Mode

意义

SaveMode.ErrorIfExists (默认)

如果目标位置已经存在数据,那么抛出一个异常

SaveMode.Append

如果目标位置已经存在数据,那么将数据追加进去

SaveMode.Overwrite

如果目标位置已经存在数据,那么就将已经存在的数据删除,用新数据进行覆盖

SaveMode.Ignore

如果目标位置已经存在数据,那么就忽略,不做任何操作。


实例:
java版本:
package cn.spark.study.core;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
public class loadandsave {
 public static void main(String[] args) {
  SparkConf conf = new SparkConf()
    .setAppName("rdd2dataframe2");
    
  JavaSparkContext sc = new JavaSparkContext(conf);
  SQLContext sqlcontext = new SQLContext(sc);
  DataFrame df = sqlcontext.read().parquet("hdfs://master:9000/users.parquet");
  
  df.select("name","favorite_color").write().save("hdfs://master:9000/test.json");
}
}
scala版本:
package com.spark.study.core
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SaveMode
object loadandsave {
  def main(args:Array[String]){
    val conf = new SparkConf()
                  .setAppName("loadandsave")
                  .setMaster("local")
                
    val sc = new SparkContext(conf)
    val sqlcontext = new SQLContext(sc)
    val  df = sqlcontext.read.parquet("hdfs://master:9000/users.parquet")
    df.save("hdfs://master:9000/user.parquet", SaveMode.Ignore)
    df.select("name", "favorite_color").write.format("json").save("hdfs://master:9000/user2.json")
   
  }
}

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/30541278/viewspace-2154745/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/30541278/viewspace-2154745/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值