对于Spark SQL的DataFrame来说,无论是从什么数据源创建出来的DataFrame,都有一些共同的load和save操作。load操作主要用于加载数据,创建出DataFrame;save操作,主要用于将DataFrame中的数据保存到文件中。
java版本:
Java版本
DataFrame df = sqlContext.read().load("users.parquet");
df.select("name", "favorite_color").write().save("namesAndFavColors.parquet");
DataFrame df = sqlContext.read().load("users.parquet");
df.select("name", "favorite_color").write().save("namesAndFavColors.parquet");
Scala版本
val df = sqlContext.read.load("users.parquet")
df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
val df = sqlContext.read.load("users.parquet")
df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
也可以手动指定用来操作的数据源类型。数据源通常需要使用其全限定名来指定,比如parquet是org.apache.spark.sql.parquet。但是Spark SQL内置了一些数据源类型,比如json,parquet,jdbc等等。实际上,通过这个功能,就可以在不同类型的数据源之间进行转换了。比如将json文件中的数据保存到parquet文件中。默认情况下,如果不指定数据源类型,那么就是parquet。
Java版本
DataFrame df = sqlContext.read().format("json").load("people.json");
df.select("name", "age").write().format("parquet").save("namesAndAges.parquet");
DataFrame df = sqlContext.read().format("json").load("people.json");
df.select("name", "age").write().format("parquet").save("namesAndAges.parquet");
Scala版本
val df = sqlContext.read.format("json").load("people.json")
df.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
val df = sqlContext.read.format("json").load("people.json")
df.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
Spark SQL对于save操作,提供了不同的save mode。主要用来处理,当目标位置,已经有数据时,应该如何处理。而且save操作并不会执行锁操作,并且不是原子的,因此是有一定风险出现脏数据的。
实例:
Save Mode | 意义 |
SaveMode.ErrorIfExists (默认) | 如果目标位置已经存在数据,那么抛出一个异常 |
SaveMode.Append | 如果目标位置已经存在数据,那么将数据追加进去 |
SaveMode.Overwrite | 如果目标位置已经存在数据,那么就将已经存在的数据删除,用新数据进行覆盖 |
SaveMode.Ignore | 如果目标位置已经存在数据,那么就忽略,不做任何操作。 |
java版本:
package cn.spark.study.core;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
public class loadandsave {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("rdd2dataframe2");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlcontext = new SQLContext(sc);
DataFrame df = sqlcontext.read().parquet("hdfs://master:9000/users.parquet");
df.select("name","favorite_color").write().save("hdfs://master:9000/test.json");
}
}
scala版本:
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("rdd2dataframe2");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlcontext = new SQLContext(sc);
DataFrame df = sqlcontext.read().parquet("hdfs://master:9000/users.parquet");
df.select("name","favorite_color").write().save("hdfs://master:9000/test.json");
}
}
package com.spark.study.core
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SaveMode
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SaveMode
object loadandsave {
def main(args:Array[String]){
val conf = new SparkConf()
.setAppName("loadandsave")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlcontext = new SQLContext(sc)
val df = sqlcontext.read.parquet("hdfs://master:9000/users.parquet")
df.save("hdfs://master:9000/user.parquet", SaveMode.Ignore)
df.select("name", "favorite_color").write.format("json").save("hdfs://master:9000/user2.json")
}
}
def main(args:Array[String]){
val conf = new SparkConf()
.setAppName("loadandsave")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlcontext = new SQLContext(sc)
val df = sqlcontext.read.parquet("hdfs://master:9000/users.parquet")
df.save("hdfs://master:9000/user.parquet", SaveMode.Ignore)
df.select("name", "favorite_color").write.format("json").save("hdfs://master:9000/user2.json")
}
}
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/30541278/viewspace-2154745/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/30541278/viewspace-2154745/