数据结构与算法之美-02复杂度分析(下)

本文深入探讨了复杂度分析,包括最好、最坏、平均和均摊时间复杂度的概念。举例说明了在不同情况下,如查找数组元素时,这些复杂度如何体现。并提出了一个add()函数,其在不同场景下的时间复杂度为:最好情况O(1),最坏情况O(n),平均和期望情况均为O(1),均摊也为O(1)。
摘要由CSDN通过智能技术生成

复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度


1.最好情况时间复杂度
最理想情况下,执行这段代码的时间复杂度,比如再数组中查找某个元素,刚好是数组的第一个元素的情况。


2.最坏情况时间复杂度

最糟糕的情况下,执行这段代码的复杂度。假如查找数组中某个元素,而这个元素并不存在的情况下


3.平均情况时间复杂度
加权平均时间复杂度


4.平均情况时间复杂度
一种特殊请款下的平均情况时间复杂度


课后思考

分析一下这个add()函数的时间复杂度

// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   
   if 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值