数组:数组是一组线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
线性表与非线性表
线性表:线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。除了数组,链表、队列、栈等也是线性表结构。
与线性表队里的概念是非线性表,比如二叉树、堆、图等。之所以叫非线性,是因为,在非线性表中,数据之间并不时间的前后关系。
连续的内存空间和相同类型的数据
正是因为有这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。
为了保持数据的连续性,数组的操作比如删除、插入操作都需要做大量的数据搬移工作。
根据下标随机访问数组元素
我们拿一个长度为10的数组来举例。let a = new Array(10).fill(' ')。如图,计算机给数组a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。
计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。
// 计算机随机访问数据中的某个元素,首先通过寻址公式,计算出该元素存储的内存地址
a[i]_address = base_adress + i * data_type_size
在例中data_type_size就为4个字节。
数组查找的时间复杂度为O(logn),数组支持随机访问,根据下标随机访问的时间复杂度为O(1)
低效的“插入”和“删除”操作
1.插入元素
最好时间复杂度:数组末尾插入元素,这时时间复杂度为O(1)
最坏时间复杂度:开头插入元素,那么所有元素都要向后移动一位,时间复杂度为O(n)
平均情况时间复杂度为O(n)
如果数组是无序的,为了避免大规模数据搬移,可以将插入位置的原来的数据直接放到最后,利用这种技巧,在特定位置下,在某个位置插入元素的时间复杂度可以降为O(1)。
2.删除元素
最好时间复杂度:数组末尾删除元素,这时时间复杂度为O(1)
最坏时间复杂度:开头删除元素,那么所有元素都要向前移动一位,时间复杂度为O(n)
平均情况时间复杂度为O(n)
如果不追求连续性,将多次删除操作集中在一起执行。删除的效率将会提高很多。先记录下已经删除的数据。每次删除操作并不是真正的搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,再触发一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。
为什么大多数编程语言中,数组要从0开始编号,而不是从1开始呢?
从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。如果用a来表示数组的首地址,a[0]就是偏移为0的位置,也就是首地址。那么问题来了,如果数组的首地址从1开始,那么再访问数组中元素时,寻址公式就会变为
a[k]_address = base_address + (k-1) * base_adress
数组作为基础的数据结构,效率优化要尽可能做到极致,所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从1开始。