最小生成树。。。。
Conscription
Description Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier. Input The first line of input is the number of test case. 1 ≤ N, M ≤ 10000 Output
For each test case output the answer in a single line.
Sample Input 2 5 5 8 4 3 6831 1 3 4583 0 0 6592 0 1 3063 3 3 4975 1 3 2049 4 2 2104 2 2 781 5 5 10 2 4 9820 3 2 6236 3 1 8864 2 4 8326 2 0 5156 2 0 1463 4 1 2439 0 4 4373 3 4 8889 2 4 3133 Sample Output 71071 54223 Source
POJ Monthly Contest – 2009.04.05, windy7926778
|
[Submit] [Go Back] [Status] [Discuss]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=22000;
int n1,n2,n,m;
struct Edge
{
int u,v,w;
}edge[maxn*3];
bool cmp(Edge a,Edge b)
{
return a.w<b.w;
}
int fa[maxn];
int Find(int x)
{
if(x==fa[x]) return x;
else return fa[x]=Find(fa[x]);
}
int kruscal()
{
int ans=0;
sort(edge,edge+m,cmp);
for(int i=0;i<n;i++) fa[i]=i;
for(int i=0;i<m;i++)
{
int f1=Find(edge[i].u);
int f2=Find(edge[i].v);
if(f1==f2) continue;
fa[f1]=f2;
ans+=edge[i].w;
}
return ans;
}
int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n1,&n2,&m);
n=n1+n2;
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
edge[i]=(Edge){a,b+n1,-c};
}
printf("%d\n",n*10000+kruscal());
}
return 0;
}