问题描述
【问题描述】输入两个大于1的整数,分别求出其最大公约数和最小公倍数并输出。
【输入形式】两个大于1的整数,空格分开
【输出形式】两个整数,用空格分开
【样例输入】4 6
【样例输出】2 12
思路
辗转相除法
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求两个正整数之最大公约数的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
例如:a=25,b=15,a%b=10,b%10=5,10%5=0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。
代码
#include<stdio.h>
int gcd(int a,int b);
int main(void){
int m,n,r;
scanf("%d%d",&m,&n);
r=gcd(m,n);
printf("%d %d\n",r,m*n/r);
return 0;
}
int gcd(int a,int b){
int t,r;
if(a<b){
t=a;
a=b;
b=t;
}
r=a%b;
if(r==0){
return b;
}else{
return gcd(b,r);
}
}