[LeetCode]Jump Game II (贪心,维护当前最远能到达的位置和所需最少步数)

最少跳跃步数

第一想法是DP,复杂度O(n^2),但是对于大型数据会超时。

Discuss中一种犀利的贪心方法,复杂度为O(n)

class Solution {
public:
    int jumpDP(int A[], int n) {//DP方法
        int *dp=new int[n],j;
		memset(dp,127,sizeof(int)*n);
		dp[0]=0;
		int i=0;
		for(i=0;i<n-1;++i){
			for(j=1;j<=A[i]&&i+j<n;++j){
				dp[i+j]=min(dp[i+j],dp[i]+1);
			}
		}
		return dp[n-1];
    }
	int jump(int A[], int n) {//贪心方法
        int nextFarrest=0;//下一个能到达的最远位置
		int curFarrest=0;//当前能到达的最远位置
		int needSteps=0;//达到curFarrest所需的最小步数
		for(int i=0;i<n;++i){
			if(i>curFarrest){//如果已经走出能当前覆盖的最大范围,
			//则切换到下一步能覆盖到的最大范围:更新步数和下一个能到达的最大范围(由于nextFarrest都指向当前步能到达的最大范围,所以只需更新为nextFarrest即可)
				curFarrest=nextFarrest;
				++needSteps;
			}
			nextFarrest=max(nextFarrest,i+A[i]);
		}
		return needSteps;
    }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值