一、Anaconda
1.下载Anaconda
(1)官方下载
访问Anaconda官网(Free Download | Anaconda),选择适合操作系统的版本,并下载安装包
(2)开源镜像网站下载
网络条件较差的可以根据需求选择合适的版本下
链接: 开源镜像
2.安装Anaconda
右键管理员模式进行安装,选择all users。磁盘可选择非C盘,后续需要将环境下载至该磁盘下。
安装路径保持英文(不要有中文)
环境变量可勾选自动添加
安装完毕,调用命令行(win+r),输入:
python
输出结果:
ctrl+c退出python,查看conda版本,输入:
conda --version
输出结果:
3.系统环境变量配置
高级系统设置---环境变量---系统变量---path,根据Anaconda的安装路径配置环境变量
安装时自动配置可忽略此步骤
4.anaconda prompt 找不到的解决方案
(1)在anaconda本地路径下运行终端
方法一:本地路径文件下输入cmd(cmd替换电脑中的路径)
方法二:在终端中运行命令行
d:
cd 复制自己的路径
输出结果:
(2)复制下面的命令行:
python .\Lib\_nsis.py mkmenus
输出结果:
开始菜单可以找到上图的文件
二、conda环境
为避免针对性不同的项目在实施过程中对电脑基本环境的影响,装载虚拟环境是必要的。后续读者可根据项目的需求对python、cuda、Pytorch等的版本个性化配置
1.conda安装python环境
打开anconda prompt,输入conda create
conda create –n 虚拟环境名称 python=版本
虚拟环境的名称要求英文、英文下划线、数字(例如:py_1)
python版本要求数字(例如:3.9)
conda create -n py_1 python=3.9
出现下面过程,回车或y即可
查看环境,展示环境列表:
conda env list
输出结果:
2.镜像源配置
(1)查看本地的镜像源:
方法一:输入命令行
conda config --show channels
方法二:本地查看
开放隐藏文件查看权限后,在C盘用户文件夹下,找到.condarc文件用记事本打开
如果本地没有.condarc文件,在终端中运行下面命令:
conda config --set show_channel_urls yes
(2)复制下面代码,添加镜像(可以在记事本中,也可以在base中添加)
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: true
输出结果:
如果环境下载速度慢可以使用镜像源:
conda create –n 虚拟环境名称 python=版本 –c 镜像地址
3.虚拟环境下载位置问题
虚拟环境下载位置不在Anaconda路径中,在C盘的用户文件下,可通过下面方法解决
(1)删除C盘下的环境文件,先运行conda env list查看环境名。运行conda remove删除虚拟环境
conda remove -n 虚拟环境名称 --all
(2)打开Anaconda本地环境文件的访问权限
到安装的Anaconda文件夹下,找到env文件,右键属性
按照下图依次点击:属性---安全---编辑
授予用户权限,并应用
(3)将下面的字符复制进.condarc
第二行应当为读者自己路径
envs_dirs:
- D://software//ananconda//envs
后续再下载虚拟环境就没问题了,会在上面这个路径中找到读者下载的conda虚拟环境包文件
三、CUDA
1.查看GPU的cuda版本
终端中运行nvidia-smi,查看英伟达显卡的配置
nvidia-smi
输出结果:
后续下载的CUDA版本小于等于CUDA Version即可;Driver Version为驱动版本
如果想了解更多的驱动与CUDA之间的对应关系,可以查看官网:
CUDA 12.6 Update 3 Release Notes
Pytorch与CUDA
Previous PyTorch Versions | PyTorch
2.CUDA下载
(1)官网下载
官网地址:CUDA Toolkit Archive | NVIDIA Developer
本机选择了CUDA11.6版本,点击如图的红色地方进入下载链接
CUDA11.X选择Version11;CUDA12.X选择Version12。进行本地下载
(2)镜像源下载
清华源:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
根据版本进行选择性下载
3.CUDA安装
后续安装可以在非C盘进行,路径应当无中文,至下图步骤开始要注意了
(1)选择自定义安装
(2)组件选择
1)Other components与Driver components
当前版本为本地版本,新版本为CUDA安装后将要替代的版本
本地的版本均大于等于新版本,可不选择。需要更替的版本可自行选择
2)CUDA
如果设备已安装VS,需要勾选Visual Studio Integration。反之,取消勾选。(博主本机没有VS)
cuda v11.6之后(v11.7开始),cuda Toolkits不再集成Samples文件夹
(3)路径选择
效仿默认路径结构,做修改后进行设置。默认路径:
C:\Program Files这部分可以做修改,后方的结构应当保留。例如:
后续一直下一步等待安装即可
(4)验证安装
nvcc -V
输出结果:
4. cuda环境变量
高级系统设置---环境变量---系统变量---path,查看cuda的环境变量,往后多版本cuda,只需将对应版本的bin和libnvvp部分置顶即可
如果系统变量中没有CUDA_PATH和CUDA_PATH_V11_6,结合自己的路径进行添加(必要)
1)变量名:CUDA_PATH
变量值:D:\Data_cuda\Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
2)变量名:CUDA_PATH_V11_6
变量值:D:\Data_cuda\Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
cuda 11.6之后(11.7开始),cuda Toolkits不再集成Samples文件夹
部分旧版本cuda需要对NVCUDASAMPLES的系统变量进行设置,结合个人需求设定其环境变量。具体操作:高级系统设置---环境变量---系统变量---新建(输出变量名和变量值)
3)变量名:NVCUDASAMPLES_ROOT
变量值:D:\Data_cuda\Data\NVIDIA Corporation\CUDA Samples\v11.6
4)变量名:NVCUDASAMPLES11_6_ROOT
变量值:D:\Data_cuda\Data\NVIDIA Corporation\CUDA Samples\v11.6
四、cuDNN
网站:cuDNN Archive | NVIDIA Developer
网站: NVIDIA Developer
需要注册英伟达账号,并登录,用邮箱注册即可。进入下载链接
version选择tarball(压缩包), CUDA Version是由刚才下载的CUDA的版本决定的,CUDA 是11.x就选11,CUDA 是12.x就选12
解压后有如下三个文件夹
将这三个文件复制到D:\Data_cuda\Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6中
验证安装
path your cudaFolder/Files/NVIDIA GPU Computing Toolkit/CUDA/v11.6/extras/demo_suite
D:\Data_cuda\Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite
在/Files/NVIDIA GPU Computing Toolkit/CUDA/v11.6/extras/demo_suite路径输入:
.\deviceQuery.exe
结果为PASS
五、Pytorch
1.Pytorch下载
(1)官网下载
官网:PyTorch
进入后下拉界面,找到下图。Previous versions of PyTorch为其他版本的选择
进入Previous versions of PyTorch,在页面ctrl+f进行搜索,搜索自己想要的CUDA和Pytorch版本
打开anaconda prompt,进入虚拟环境,进行pip install
conda activate your_env
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
(2)其他的下载网站
网速慢可以自行根据CUDA、torch、torchaudio、torchvision版本,进入下面的网站进行安装
torch的安装应当在torchvision之前进行
1)torch:download.pytorch.org/whl/torch_stable.html
该方法下载的whl文件,需要在终端跳转到下载路径下,pip install whl文件全程(包括.whl)
2)清华源:Index of /anaconda/cloud/pytorch/win-64/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
将下载的压缩文件解压后的文件复制进D:\software\ananconda\envs\py_1\Lib\site-packages中
2.验证Pytorch安装
(1)下载完成后在环境中,查看列表
pip list
(2)虚拟环境中进入python,torch.cuda.is_available() 为True则GPU可用,False为不可用
conda activate your_env
python
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available()) #输出为True,则安装成功
输出结果:
六、Pycahrm
建立python项目后,在文件目录中进入设置,根据图中顺序配置IDE解释器
Pycharm右下角解释器可选择,终端中抬头括号内的环境应为配置的环境名称
配置完成环境无法跳转,重启IDE即可
以上为Pytorch-GPU的全流程环境搭建。