LeetCode198.打家劫舍
本题较为简单,考虑一个节点时,只需要考虑偷和不偷两种情况,当不偷的情况时,取dp[n-1],这里的意思并不是决定偷n-1的节点,而是考虑n-1节点时的最大价值。
代码如下:
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==1) return nums[0];
else if(nums.size()==2) return max(nums[0],nums[1]);
else if(nums.size()==0) return 0;
vector<int> dp(nums.size(),0);
dp[0] = nums[0];
dp[1] = max(nums[0],nums[1]);
for(int i=2;i<nums.size();i++){
dp[i] = max(dp[i-2]+nums[i],dp[i-1]);
}
return dp[nums.size()-1];
}
};
LeetCode213.打家劫舍II
相比于上一题需要考虑环形,那么就只会分为三种情况:1、首尾都不考虑;2、考虑首不考虑尾;3、考虑尾不考虑首。那么在这三种情形中,第23种情形只是考虑首和尾,并没有说偷不偷,因为情形2和3里面包含了1.
如果只考虑一种情形,那么和上题就是一样的,我们只需要对两种情形分别做一次打家劫舍I,然后取最大值就是我们的结果。
代码如下:
class Solution {
public:
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2);
int result2 = robRange(nums, 1, nums.size() - 1);
return max(result1, result2);
}
};
LeetCode337.打家劫舍III
本题有一定难度,将二叉树与动态规划相结合,基础的树形dp。
思路:每个节点均有一个dp数组,只有两个值,dp[0]表示不偷当前节点时的所得到的最大价值,dp[1]表示偷当前节点是所得到的最大价值,那么分别考虑两种情况,当不偷当前节点时,就可以考虑左右两个子孩子,将他们的最大价值相加。当偷当前节点时,就只能考虑左右两个子孩子不偷的情形所能获得的最大价值。思路还是很巧妙的,但第一次接触真的难想。
代码如下:
class Solution {
public:
vector<int> robTree(TreeNode* root){
if(root==nullptr) return vector<int>{0,0};
vector<int> robLeft = robTree(root->left);
vector<int> robRight = robTree(root->right);
int val1 = max(robLeft[0],robLeft[1])+max(robRight[0],robRight[1]);
int val2 = robLeft[0]+robRight[0]+root->val;
return vector<int>{val1,val2};
}
int rob(TreeNode* root) {
vector<int> dp = robTree(root);
return max(dp[0],dp[1]);
}
};