时间序列之差分自回归移动平均法(ARIMA)

ARIMA模型通过差分将非平稳时间序列转化为平稳序列,包括AR(p)、MA(q)和ARMA(p,q)。d表示差分次数,p和q分别对应自回归和移动平均的阶数。确定参数d、p、q时,依据时间序列的平稳性和自相关图、偏自相关图的特性。ARIMA模型的应用需要综合考虑模型的简洁性和预测效果。" 104752346,7218332,Python正则表达式转义与原生字符串,"['python', '正则表达式', '字符串处理', '编程技巧']
摘要由CSDN通过智能技术生成

        ARIMA模型的基本思想是将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARMIA模型有四种形式:移动平均模型-MA(q)、自回归模型-AR(p)、自回归移动平均模型ARMA(p,q)以及差分自回归移动平均模型ARIMA(p,d,q ),可以说所有模型都是ARIMA(p,d,q )的变体。

 

ARIMA(p,d,q)模型的说明:

1. 差分

这个过程是ARIMA模型相比ARMA模型而言多的一个过程,在时间序列为非平稳序列时,可以对原序列做差分来得到平稳时间序列,可能会需要做多次差分。d这个参数就是定义原时间序列需要做几次差分,若时间序列本身就是平稳的,数据不需要做差分,则ARMIA模型为ARIMA(p,0,q),等同于ARMA(p,q)。

2. 自回归

如果时间序列满足:,其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值