ARIMA模型的基本思想是将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARMIA模型有四种形式:移动平均模型-MA(q)、自回归模型-AR(p)、自回归移动平均模型ARMA(p,q)以及差分自回归移动平均模型ARIMA(p,d,q ),可以说所有模型都是ARIMA(p,d,q )的变体。
ARIMA(p,d,q)模型的说明:
1. 差分
这个过程是ARIMA模型相比ARMA模型而言多的一个过程,在时间序列为非平稳序列时,可以对原序列做差分来得到平稳时间序列,可能会需要做多次差分。d这个参数就是定义原时间序列需要做几次差分,若时间序列本身就是平稳的,数据不需要做差分,则ARMIA模型为ARIMA(p,0,q),等同于ARMA(p,q)。
2. 自回归
如果时间序列满足:,其中