前言
背景起源于汇报时老板问我的一个问题:“Class F VCO的谐振腔有两个峰值,你怎么保证VCO工作的时候一定工作再基波的谐振峰处呢?”
当时想了很久没能回答上来,后来想到应该是由于Z21在基波处有一个增益,能够不断放大基波分量,抑制三次谐波分量,这才能够保证输出一直是震荡在基波处的。
但是这样又有一个问题,为什么Z21的峰值只在基波处产生呢?
正文
注意到双模VCO和F类VCO的谐振腔都需要多个谐振峰值,于是有些好奇二者之间的差别,简单记录一下。
以文献[1]中的谐振腔为例:
F类VCO的两个谐振峰存在的位置分别是基波fosc处和三次谐波3fosc处。双模VCO的谐振峰值只要足够远就可以,目的是为了覆盖尽量宽的频率范围。
如下图所示,由于Class F VCO每次都需要用到两个峰值,普通的双模VCO往往可以实现至少比F类VCO高一倍的频率范围。
Dual-mode Class F VCO [4] | Dual-mode VCO [1] |
---|---|
下面来看一下两者的电路结构有什么不同。如下表所示,可以看到,Class F变压器次级线圈之间一般是没有开关的,也只有一个core(当然你也可以做成dual mode Class F,后面会说到),dual-mode一般都是有多个核心,核心之间会有开关控制不同模式。
Class F VCO [2] | Quad-mode VCO [3] |
---|---|
[3]是四模的,这里画的是双模为例 |
首先对于双模VCO的两个谐振腔模式进行分析:
- 偶模模式下,两个核心注入谐振腔的电压、电流幅度和相位相同,电流流入两端次级线圈同名端。变压器同相耦合,L等效为(L+M)。对于Cc来说,两端电位相等,相当于开路,此时相当于每个core得到分立的谐振腔: L = L + M , C = C , ω o s c 2 = 1 ( L + M ) C L=L+M,C=C,\omega_{osc}^2=\frac{1}{(L+M)C} L=L+M,C=C,ωosc2=(L+M)C1
- 偶模模式下,两个核心注入谐振腔的电压、电流幅度相同,相位相反,电流分别流入和流出两次级线圈同名端,变压器反相耦合,L等效为(L-M)。对于Cc来说,两端电位相反,相当于中间一半电容接地,再合并后并联到C端。此时相当于每个core得到分立的谐振腔:
L
=
L
−
M
,
C
=
C
+
C
2
,
ω
o
s
c
2
=
1
(
L
−
M
)
(
C
+
C
2
)
L=L-M,C=C+C_2,\omega_{osc}^2=\frac{1}{(L-M)(C+C_2)}
L=L−M,C=C+C2,ωosc2=(L−M)(C+C2)1
可以看到,对于双模VCO来说,不同的模式就只有一个谐振峰值。
对于Class F VCO来说,由于晶体管栅极不具备驱动能力,因此漏极作为输入,栅极作为输出。因此 i 1 , i 2 i_1,i_2 i1,i2之间不存在等幅反相的关系,只有耦合的关系,可以使用变压器T型模型分析:
因此具有两个谐振峰。
有意思的是,如果在Class-F VCO结构中加上 C c C_c Cc,你会发现谐振峰也会变成一个:
也可以从开关的角度来理解双模VCO:
通过开关提供的负阻来判断当前模式是损耗了能量(不提供负阻)还是补充了能量(提供负阻)。从而对另一个模式进行衰减。而Class F VCO则是依靠gate-drain之间的增益实现的在基波处振荡。
唔虽然写到这里,但感觉对变压器谐振腔的理解还是不够深刻,对两种VCO之间的区别也没有get到一针见血的点,也许以后还会来补充这篇笔记吧~
参考文献:
[1] G. Li, L. Liu, Y. Tang and E. Afshari, “A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 6, pp. 1295-1308, June 2012, doi: 10.1109/JSSC.2012.2190185.
[2] M. Babaie and R. B. Staszewski, “A Class-F CMOS Oscillator,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013, doi: 10.1109/JSSC.2013.2273823.
[3] Y. Shu, H. J. Qian and X. Luo, “A 2-D Mode-Switching Quad-Core Oscillator Using E-M Mixed-Coupling Resonance Boosting,” in IEEE Journal of Solid-State Circuits, vol. 56, no. 6, pp. 1711-1721, June 2021, doi: 10.1109/JSSC.2020.3028382.
[4] Y. Shu, H. J. Qian and X. Luo, “A 20.7–31.8GHz Dual-Mode Voltage Waveform-Shaping Oscillator with 195.8dBc/Hz FoMT in 28nm CMOS,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 216-219, doi: 10.1109/RFIC.2018.8429001.