AI写算法:Q-learning

下面是一个简单的Q-learning算法的Python实现。这个代码示例是一个简化的版本,主要用于演示Q-learning的基本原理。在这个例子中,我们假设环境是一个简单的迷宫,其中有四个状态(S0, S1, S2, S3),并且可以从每个状态转移到其他任意状态。奖励函数是任意的,仅用于示例。

 

python复制代码

import numpy as np
# 定义环境参数
states = ['S0', 'S1', 'S2', 'S3']
actions = ['a0', 'a1', 'a2', 'a3'] # 假设在每个状态下都可以采取四个动作
# 初始化Q表
Q_table = {s: {a: 0 for a in actions} for s in states}
# 超参数
gamma = 0.8 # 折扣因子
a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

军哥说AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值