在家这么久刷了不少题,也想着总结一下,欢迎看到的小伙伴一起打卡,监督学习进步,欢迎加v:15810853703,第四天打卡了嘛qaq
题目描述
知识点:动态规划
62. 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
来源:力扣 (LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths/
解答
做题技巧
** 可简化到一维dp **
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> vec(m, 1);//m列的向量
for(int i = 0; i < n - 1; i++)//n行,就要迭代n-1次
for(int j = 1; j < m; j++)
vec[j] += vec[j-1];
return vec[m-1];
}
};
//普通解法
class Solution {
public:
int uniquePaths(int m, int n) {
if(m==1&&n==1)return 1;
vector<vector<int>> res(m,vector<int>(n));//创建大小为m*n的数组
for(int i=0;i<m;++i){
res[i][0]=1;
}
for(int i=0;i<n;++i){
res[0][i]=1;
}
for(int i=1;i<m;++i){
for(int j=1;j<n;++j){
res[i][j]=res[i][j-1]+res[i-1][j];
}
}
return res[m-1][n-1];
}
};
63. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
来源:力扣 (LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii/
解答
做题技巧
** 是要用Long 不然会越界 **
** 边界点这的写法 若当前为障碍或之前有障碍 则都为0 **
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid.size()==0 || obstacleGrid[0].size()==0)
return 0;
int m=obstacleGrid.size();
int n=obstacleGrid[0].size();
vector<vector<long>>dp(m,vector<long>(n,0));
dp[0][0] = !obstacleGrid[0][0];
for(int i = 1;i< m;i++)dp[i][0] = (obstacleGrid[i][0] == 1 || dp[i-1][0] == 0)?0:1;
for(int i = 1;i< n;i++)dp[0][i] = (obstacleGrid[0][i] == 1 || dp[0][i-1] == 0)?0:1;
for(int i = 1;i< m;i++){
for(int j =1;j<n;j++){
if(obstacleGrid[i][j] == 1)dp[i][j] = 0;
else
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
相似的题目还有 :简化路径
欢迎大家补充~