Hive 数据类型
数据类型中最常用的是基本数据类型中的 INT、BIGINT、BOOLEAN、DOUBLE以及STRING。
基本数据类型
对于 Hive 的 String 类型相当于数据库的 varchar 类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储 2GB 的字符数。
集合数据类型
Hive 有三种复杂数据类型 ARRAY、MAP 和 STRUCT。ARRAY 和 MAP 与 Java 中的 Array和 Map 类似,而 STRUCT 与 C 语言中的 Struct 类似(类似于Java的JavaBean),它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。
案例实操
假设某表有如下一行,我们用 JSON 格式来表示其数据结构。在 Hive 下访问的格式为
{
"name": "caocao",
"friends": ["liubei" , "sunquan"], //列表 Array,
"children": { //键值 Map,
"caozhi": 15 ,
"caopi": 16
}
"address": { //结构 Struct,
"street": "huanggong",
"city": "xuchang"
}
}
基于上述数据结构,我们在 Hive 里创建对应的表,并导入数据。创建本地测试文件 test.txt
源数据如下:
caocao,liubei_sunquan,caozhi:15_caopi:16,huanggong_xuchang
caopi,simayi,caorui:10,huanggong_xuchang
注意:MAP,STRUCT 和 ARRAY 里的元素间关系都可以用同一个字符表示,这里用“_”。
Hive 上创建测试表 weitest
create table weitest(
name string,
friends array<string>,
children map<string, int>,
address struct<street:string, city:string>
)
row format delimited
fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';
## fields terminated by ',' // 字段与字段之间的分隔符
## collection items terminated by '_' // 集合元素之间的分隔符,只能统一定义,不能单独定义
## map keys terminated by ':' // map的key和value的分隔符
## lines terminated by '\n'; // 每一行的分隔符
导入测试文本数据到指定表中
load data local inpath '/opt/module/hive/testData/test.txt' into table weitest;
或者直接将文件放到/user/hive/warehouse/weitest目录下
访问数据
hive (default)> select * from weitest;
OK
weitest.name weitest.friends weitest.children weitest.address
caocao ["liubei","sunquan"] {"caozhi":15,"caopi":16} {"street":"huanggong","city":"xuchang"}
caopi ["simayi"] {"caorui":10} {"street":"huanggong","city":"xuchang"}
Time taken: 2.784 seconds, Fetched: 2 row(s)
hive (default)> select friends[0], children['caopi'], address.city from weitest;
OK
_c0 _c1 city
liubei 16 xuchang
simayi NULL xuchang
Time taken: 1.285 seconds, Fetched: 2 row(s)
## 数组访问用index,map访问用key,struct访问用对应的字段
类型转化
Hive 的原子数据类型是可以进行隐式转换的,类似于 Java 的类型转换,例如某表达式使用 INT 类型,TINYINT 会自动转换为 INT 类型,但是 Hive 不会进行反向转化,例如,某表达式使用 TINYINT 类型,INT 不会自动转换为 TINYINT 类型,它会返回错误,除非使用 CAST操作。
1)隐式类型转换规则如下
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如 TINYINT 可以转换成INT,INT 可以转换成 BIGINT。
(2)所有整数类型、FLOAT 和 STRING 类型都可以隐式地转换成 DOUBLE。
(3)TINYINT、SMALLINT、INT 都可以转换为 FLOAT。
(4)BOOLEAN 类型不可以转换为任何其它的类型。
2)可以使用 CAST 操作显示进行数据类型转换
例如 CAST(‘1’ AS INT)将把字符串’1’ 转换成整数 1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
hive (default)> select '1'+2, cast('1'as int) + 2;
OK
_c0 _c1
3.0 3
Time taken: 0.954 seconds, Fetched: 1 row(s)
DDL数据定义
创建数据库
CREATE DATABASE [IF NOT EXISTS] database_name
[COMMENT database_comment] // 注释
[LOCATION hdfs_path] // 库目录存放的路径
[WITH DBPROPERTIES (property_name=property_value, ...)]; // 其他的信息
1)创建一个数据库,数据库在 HDFS 上的默认存储路径是/user/hive/warehouse/*.db。
hive (default)> create database db_hive;
2)避免要创建的数据库已经存在错误,增加 if not exists 判断。(标准写法)
hive (default)> create database db_hive;
FAILED: Execution Error, return code 1 from
org.apache.hadoop.hive.ql.exec.DDLTask. Database db_hive already exists
hive (default)> create database if not exists db_hive;
3)创建一个数据库,指定数据库在 HDFS 上存放的位置
hive (default)> create database db_hive2 location '/db_hive2.db';
查询数据库
显示数据库
1)显示数据库
hive> show databases;
2)过滤显示查询的数据库
hive (default)> show databases like 'db_hive*';
OK
database_name
db_hive2
Time taken: 0.086 seconds, Fetched: 1 row(s)
查看数据库详情
1)显示数据库信息
hive (default)> desc database db_hive2;
OK
db_name comment location owner_name owner_type parameters
db_hive2 hdfs://hadoop113:8020/db_hive2.db bd USER
Time taken: 0.141 seconds, Fetched: 1 row(s)
2)显示数据库信息
hive (default)> desc database extended db_hive2;
OK
db_name comment location owner_name owner_type parameters
db_hive2 hdfs://hadoop113:8020/db_hive2.db bd USER
Time taken: 0.141 seconds, Fetched: 1 row(s)
切换当前数据库
hive (default)> use db_hive2;
修改数据库
用户可以使用 ALTER DATABASE 命令为某个数据库的 DBPROPERTIES 设置键-值对属性值,来描述这个数据库的属性信息。
hive (default)> alter database db_hive set dbproperties('createtime'='20210830');
修改之后的数据库信息查看可用desc database extended db_hive;
删除数据库
1)删除空数据库
hive>drop database db_hive2;
2)如果删除的数据库不存在,最好采用 if exists 判断数据库是否存在
hive> drop database db_hive;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
hive> drop database if exists db_hive;
3)如果数据库不为空,可以采用 cascade 命令,强制删除
hive> drop database db_hive;
FAILED: Execution Error, return code 1 from
org.apache.hadoop.hive.ql.exec.DDLTask.
InvalidOperationException(message:Database db_hive is not empty. One ormore tables exist.)
hive> drop database db_hive cascade;
创建表
1)建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)]
[AS select_statement]
2)字段解释说明
(1) CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
(2)EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时可以指定一个指向实际数据的路径(LOCATION),在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。Hive中的表有内部表和外部表之分。
(3)COMMENT:为表和列添加注释。
(4)PARTITIONED BY 创建分区表
(5)CLUSTERED BY 创建分桶表
(6)SORTED BY 不常用,对桶中的一个或多个列另外排序
(7)ROW FORMAT,定义行的格式。
DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value,property_name=property_value, …)]
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROWFORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
SerDe 是 Serialize/Deserilize 的简称, hive 使用 Serde 进行行对象的序列与反序列化。
(8)STORED AS 指定存储文件类型
常用的存储文件类型: SEQUENCEFILE (二进制序列文件)、 TEXTFILE (文本)、 RCFILE (列式存储格式文件)如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
(9)LOCATION :指定表在 HDFS 上的存储位置。
(10)TBLPROPERTIES表的额外属性。
(11)AS:后跟查询语句,根据查询结果创建表。create table if not exists student2 as select id, name from student;
(12)LIKE 允许用户复制现有的表结构,但是不复制数据。create table if not exists student3 like student;
可以通过TBLS表查看表是外部还是内部
建表时,对于多个字段时,最好执行分隔符,方便对于源数据的下载查看,以及直接put文件到指定目录。
管理表(内部表)
默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive 会(或多或少地)控制着数据的生命周期。Hive 默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。
当我们删除一个管理表时, Hive 也会删除这个表中数据。管理表不适合和其他工具共享数据。
外部表
因为表是外部表,所以 Hive 并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。
管理表和外部表的使用场景
每天将收集到的网站日志定期流入 HDFS 文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过 SELECT+INSERT 进入内部表。
外部表和内部表的区别在与,表被删除时,内部表会删除HDFS上的数据,而外部表不会。相对内部表,外部表更加的安全。
管理表与外部表的互相转换
// 修改内部表 student2 为外部表
alter table student2 set tblproperties('EXTERNAL'='TRUE');
// 修改外部表 student2 为内部表
alter table student2 set tblproperties('EXTERNAL'='FALSE');
// 查询表的类型
desc formatted student2;
注意:(‘EXTERNAL’=‘TRUE’)和(‘EXTERNAL’=‘FALSE’)为固定写法,区分大小写!
修改表
重命名表
ALTER TABLE table_name RENAME TO new_table_name
hive (default)> alter table dept_partition2 rename to dept_partition3;
增加/修改/替换列信息
// 更新列
ALTER TABLE table_name
CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]
// 增加和替换列
ALTER TABLE table_name
ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)
注:ADD 是代表新增一字段,字段位置在所有列后面(partition 列前), REPLACE 则是表示替换表中所有字段。
可以通过desc tablename
来查询表结构
对于表的修改只是操作元数据,不会真正的去HDFS上进行文件的操作。
删除表
hive (default)> drop table dept;