tensorflow学习第一课

刚刚接触tensorflow和python感觉对其中的一些操作很难上手,比如说文件中数据如何处理成tensorflow可以处理的形式就比较难。主要进行tensorflow的学习是为了搞清楚Spark中进行机器学习分布式训练和tensorflow的机器学习训练有什么训练效果上的差异。自己做了一年左右的基于Spark的非线性机器学习算法的优化和相应的实现,只是比较清楚Spark处理机器学习算法的效果。但是有人问我在Spark上自己实现非线性机器学习算法的意义在哪里的时候,我还是很蒙,因为现在已经有比较成熟的tensorflow框架,为什么不在框架中进行训练呢?为了明白这两个中的区别,我开始学习tensorflow并希望进行相应的对比测试。

首先就是Tensorflow中文社区中的第一节,对mnist数据集进行神经网络的训练,看到代码的加载文件的部分时我就开始懵了

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 

为了方便使用,tensorflow提供了一个类来处理mnist数据集,read_data_sets类可以自动的进行下载和相应的类型转化。其中自动生成三个数据集train、validation和test数据集。其中三个数据集的大小分别是55000,5000,10000。

print mnist.train.num_examples
print mnist.validation.num_examples
print mnist.test.num_examples

同时生成的mnist类中还集成了mnist.train.next_batch()实现对数据集的分块。这样可以实现只需要数据的一部分就可以进行数据集的训练,减少了每次迭代的时间。感觉这种方法其实就是常见的epoch方法。由于官网上说的不完整,所以这里直接上完整成功的相关代码。

# -*- coding:utf-8 -*-
#success
import tensorflow as tf
import input_data
#input_data:用于训练和测试的MNIST数据集的源码
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #download the data of train and testm
trainimage = mnist.train.images
trainLabel = mnist.train.labels
trainimageSize = mnist.train.images.size
trainLabelSize = mnist.train.labels.size
print trainimageSize,trainLabelSize
testimage = mnist.test.images
testlabel = mnist.test.labels
testimageSize = mnist.test.images.size
testlabelSize = mnist.test.labels.size
print testimageSize,testlabelSize
mnist.validation
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
y_ = tf.placeholder("float", [None, 10])
# 在机器学习的模型中,我们需要定义一个衡量模型好坏的方式,称为代价函数(Cost Loss),这里使用了交叉熵去衡量 reduce_sum 累加
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# cross_entropy = -tf.reduce_sum(y * tf.log(y)) #交叉熵
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) #最小化交叉熵
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
    batch = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch[0],y_: batch[1]})
 #   print i
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
print correct_prediction
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

其中import的input_data,是自己添加的一个input_data.py文件,其主要内容如下:

#-*- coding:utf-8 -*-
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=unused-import
import gzip
import os
import tempfile

import numpy
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
# pylint: enable=unused-import

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值