物理_近代物理

本文归纳了近代物理中的关键考点,包括基尔霍夫定律解释材料的辐射与吸收比例,瑞利-金斯公式的局限性,光电效应的饱和电流与频率关系,能量动量的关系,线性谐振子的能量本征方程,李德伯公式在光谱分析的应用,以及氢原子光谱的跃迁能量计算。内容主要涉及基础物理原理及其在实验中的应用。
摘要由CSDN通过智能技术生成

近代物理

个人做的常见考点归纳,和学校题库相关,仅供借鉴参考。

一、基尔霍夫定律

在热平衡的条件下,材料的辐出度与吸收率的比值只是波长和温度的函数,与材料选取无关:
M 1 a 1 = M 2 a 2 = ⋯ = M k a k {M_1 \over a_1} = {M_2 \over a_2} = \cdots = {M_k \over a_k} a1M1=a2M2==akMk


二、瑞利-金斯经验公式

导致了紫外灾难,在波长很长处于实验曲线比较相近。
紫外灾难

M λ 0 ( T ) = C 3 λ − 4 T M_{\lambda 0} (T) = C_3\lambda^{-4}T Mλ0(T)=C3λ4T


三、光电效应

饱和光电流与光强成正比,与频率成反比:
I = h I 0 ν I = hI_0\nu I=hI0ν
单位埃, A ˚ = 1 0 − 10 \mathring{A} = 10^{-10} A˚=1010

计算题常量示意,常量一定要有计算经验,否则上考场就会着急忙慌(单位: n m nm nm):
λ = h c h c λ 0 + E k m = 6.63 × 1 0 − 34 ⋅ 3 × 1 0 8 6.63 × 1 0 − 34 ⋅ 3 × 1 0 8 540 × 1 0 − 9 + 1.2 ⋅ 1.6 × 1 0 − 19 = 355 \Large{\lambda = {hc \over {hc \over \lambda_0} + E_{km}} = {6.63\times10^{-34}\cdot3\times10^{8}\over{6.63\times10^{-34}\cdot3\times10^{8} \over 540\times 10^{-9}}+1.2\cdot1.6\times10^{-19}}=355} λ=λ0hc+Ekmhc=540×1096.63×10343×108+1.21.6×10196.63×10343×108=355
注意: 电子伏特的处理。
E k m = 1.2 e V = 1.2 ⋅ 1.6 × 1 0 − 19 V E_{km} = 1.2eV = 1.2\cdot1.6\times10^{-19}V Ekm=1.2eV=1.21.6×1019V


四、能量-动量关系

动能与动量关系: p = 2 m e E k p = \sqrt{2m_eE_k} p=2meEk


五、动-静质量关系

m = γ m 0 = m 0 1 − u 2 c 2 \large{m = \gamma m_0 = {m_0 \over \sqrt{1-{u^2 \over c^2}}}} m=γm0=1c2u2 m0
能量改变: E = γ m 0 c 2 = m 0 c 2 1 − u 2 c 2 \large{E = \gamma m_0c^2 = {m_0c^2 \over \sqrt{1-{u^2 \over c^2}}}} E=γm0c2=1c2u2 m0c2


六、线性谐振子

能量本征方程: E = ( n + 1 2 h ν ) E = (n+{1 \over 2}h \nu) E=(n+21hν)


七、李德伯公式

1 λ = R ∞ ( 1 k 2 − 1 n 2 ) {1 \over \lambda} = R_\infty({1 \over k^2} - {1 \over n^2}) λ1=R(k21n21)
其中: k = { 1 莱曼系 2 巴耳末系 3 帕邢系 4 布拉开系 n = k + 1 , k + 2 , k + 3 , ⋯ {\begin{aligned}k&=\left\{\begin{aligned} &1\quad 莱曼系\\ &2 \quad 巴耳末系\\&3 \quad 帕邢系\\&4 \quad 布拉开系\end{aligned}\right.\\n &= k+1, k+2, k+3, \cdots\end{aligned}} kn= 1莱曼系2巴耳末系3帕邢系4布拉开系=k+1,k+2,k+3,


八、氢原子光谱

氢原子要能发射出可见光谱线,至少要跃迁到 n = 3 n=3 n=3,才能跃迁到 n = 2 n=2 n=2 E n = 13.6 e V n 2 \Large{E_n = {13.6eV \over n^2}} En=n213.6eV
Δ E = E 3 − E 1 = E 1 9 − E 1 = ( − 13.6 ) × ( − 8 9 ) e V ≈ 12.09 e V \Delta E = E_3-E_1 = {E_1 \over 9} - E_1 = (-13.6)\times(-{8 \over 9})eV \approx 12.09eV ΔE=E3E1=9E1E1=(13.6)×(98)eV12.09eV
角动量(动量矩)量子化: L = n ℏ = n h 2 π ( n = 1 , 2 , 3 , ⋯   ) {L = n\hbar = n{h \over 2\pi} \quad (n = 1, 2, 3, \cdots)} L=n=n2πh(n=1,2,3,)
常用数据: E 1 = − 13.9 e V , E 2 = − 3.4 e V , E 3 = − 1.5 e V E_1 = -13.9eV, E_2 = -3.4eV, E_3 = -1.5eV E1=13.9eV,E2=3.4eV,E3=1.5eV

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学生山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值