近代物理
个人做的常见考点归纳,和学校题库相关,仅供借鉴参考。
一、基尔霍夫定律
在热平衡的条件下,材料的辐出度与吸收率的比值只是波长和温度的函数,与材料选取无关:
M
1
a
1
=
M
2
a
2
=
⋯
=
M
k
a
k
{M_1 \over a_1} = {M_2 \over a_2} = \cdots = {M_k \over a_k}
a1M1=a2M2=⋯=akMk
二、瑞利-金斯经验公式
导致了紫外灾难,在波长很长处于实验曲线比较相近。
M λ 0 ( T ) = C 3 λ − 4 T M_{\lambda 0} (T) = C_3\lambda^{-4}T Mλ0(T)=C3λ−4T
三、光电效应
饱和光电流与光强成正比,与频率成反比:
I
=
h
I
0
ν
I = hI_0\nu
I=hI0ν
单位埃,
A
˚
=
1
0
−
10
\mathring{A} = 10^{-10}
A˚=10−10。
计算题常量示意,常量一定要有计算经验,否则上考场就会着急忙慌(单位:
n
m
nm
nm):
λ
=
h
c
h
c
λ
0
+
E
k
m
=
6.63
×
1
0
−
34
⋅
3
×
1
0
8
6.63
×
1
0
−
34
⋅
3
×
1
0
8
540
×
1
0
−
9
+
1.2
⋅
1.6
×
1
0
−
19
=
355
\Large{\lambda = {hc \over {hc \over \lambda_0} + E_{km}} = {6.63\times10^{-34}\cdot3\times10^{8}\over{6.63\times10^{-34}\cdot3\times10^{8} \over 540\times 10^{-9}}+1.2\cdot1.6\times10^{-19}}=355}
λ=λ0hc+Ekmhc=540×10−96.63×10−34⋅3×108+1.2⋅1.6×10−196.63×10−34⋅3×108=355
注意: 电子伏特的处理。
如
E
k
m
=
1.2
e
V
=
1.2
⋅
1.6
×
1
0
−
19
V
E_{km} = 1.2eV = 1.2\cdot1.6\times10^{-19}V
Ekm=1.2eV=1.2⋅1.6×10−19V
四、能量-动量关系
动能与动量关系: p = 2 m e E k p = \sqrt{2m_eE_k} p=2meEk
五、动-静质量关系
m
=
γ
m
0
=
m
0
1
−
u
2
c
2
\large{m = \gamma m_0 = {m_0 \over \sqrt{1-{u^2 \over c^2}}}}
m=γm0=1−c2u2m0
能量改变:
E
=
γ
m
0
c
2
=
m
0
c
2
1
−
u
2
c
2
\large{E = \gamma m_0c^2 = {m_0c^2 \over \sqrt{1-{u^2 \over c^2}}}}
E=γm0c2=1−c2u2m0c2
六、线性谐振子
能量本征方程: E = ( n + 1 2 h ν ) E = (n+{1 \over 2}h \nu) E=(n+21hν)
七、李德伯公式
1
λ
=
R
∞
(
1
k
2
−
1
n
2
)
{1 \over \lambda} = R_\infty({1 \over k^2} - {1 \over n^2})
λ1=R∞(k21−n21)
其中:
k
=
{
1
莱曼系
2
巴耳末系
3
帕邢系
4
布拉开系
n
=
k
+
1
,
k
+
2
,
k
+
3
,
⋯
{\begin{aligned}k&=\left\{\begin{aligned} &1\quad 莱曼系\\ &2 \quad 巴耳末系\\&3 \quad 帕邢系\\&4 \quad 布拉开系\end{aligned}\right.\\n &= k+1, k+2, k+3, \cdots\end{aligned}}
kn=⎩
⎨
⎧1莱曼系2巴耳末系3帕邢系4布拉开系=k+1,k+2,k+3,⋯
八、氢原子光谱
氢原子要能发射出可见光谱线,至少要跃迁到
n
=
3
n=3
n=3,才能跃迁到
n
=
2
n=2
n=2,
E
n
=
13.6
e
V
n
2
\Large{E_n = {13.6eV \over n^2}}
En=n213.6eV。
Δ
E
=
E
3
−
E
1
=
E
1
9
−
E
1
=
(
−
13.6
)
×
(
−
8
9
)
e
V
≈
12.09
e
V
\Delta E = E_3-E_1 = {E_1 \over 9} - E_1 = (-13.6)\times(-{8 \over 9})eV \approx 12.09eV
ΔE=E3−E1=9E1−E1=(−13.6)×(−98)eV≈12.09eV
角动量(动量矩)量子化:
L
=
n
ℏ
=
n
h
2
π
(
n
=
1
,
2
,
3
,
⋯
)
{L = n\hbar = n{h \over 2\pi} \quad (n = 1, 2, 3, \cdots)}
L=nℏ=n2πh(n=1,2,3,⋯)
常用数据:
E
1
=
−
13.9
e
V
,
E
2
=
−
3.4
e
V
,
E
3
=
−
1.5
e
V
E_1 = -13.9eV, E_2 = -3.4eV, E_3 = -1.5eV
E1=−13.9eV,E2=−3.4eV,E3=−1.5eV