物理_光学

光学

个人做的大学物理常见考点归纳,和学校题库相关,仅供借鉴参考。

一、和差化积

c o s α c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] cos\alpha cos\beta={1\over 2}[cos(\alpha+\beta)+cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
x = 2 a ( 1 + c o s w 0 t ) c o s m w 0 t = 2 a c o s m w 0 t + a ( c o s ( m + 1 ) w 0 t + c o s ( m − 1 ) w 0 t ) = a c o s ( m − 1 ) w 0 t + 2 c o s m w 0 t + a c o s ( m + 1 ) w 0 t \begin{aligned} x&=2a(1+cosw_0t)cosmw_0t\\ &=2acosmw_0t+a(cos(m+1)w_0t+cos(m-1)w_0t)\\ &=acos(m-1)w_0t+2cosmw_0t+acos(m+1)w_0t \end{aligned} x=2a(1+cosw0t)cosmw0t=2acosmw0t+a(cos(m+1)w0t+cos(m1)w0t)=acos(m1)w0t+2cosmw0t+acos(m+1)w0t


二、单缝衍射

单缝上下异动,衍射图样不变。
中心图样与入射角方向变化一致。
k k k级明纹的角宽度和线宽度:
Δ θ k = λ b Δ x = λ f b \begin{aligned}\Delta \theta_k=&{\lambda \over b} \\ \Delta x=&{\lambda f \over b}\end{aligned} Δθk=Δx=bλbλf
中央明纹角、线宽度均为 2 2 2倍。
光强缝宽关系:
I ∝ b 2 I \propto b^2 Ib2


三、圆孔衍射

最小分辨角 δ θ \delta \theta δθ,即艾里斑(中央亮光斑)对透镜光心的张角(半角宽度):
δ θ = ϕ ≈ s i n ϕ = 0.61 λ R = 1.22 λ D \delta \theta=\phi \approx sin\phi={0.61\lambda \over R}={1.22\lambda \over D} δθ=ϕsinϕ=R0.61λ=D1.22λ
光学仪器的分辨率为最小分辨角的倒数 1 δ θ \Large{1 \over \delta \theta} δθ1


四、光栅衍射

是单缝衍射和多缝干涉的双重效果。
光栅衍射

斜入射时光栅方程:
( a + b ) ( s i n θ + s i n ϕ ) = d ( s i n θ + s i n ϕ ) = ± k λ (a+b)(sin\theta+sin\phi)=d(sin\theta+sin\phi)=\pm k\lambda (a+b)(sinθ+sinϕ)=d(sinθ+sinϕ)=±
缺级 k ′ k' k为:
a s i n ϕ = k ′ λ k = a + b a k ′ \begin{aligned} asin\phi&=k'\lambda \\ k&={a+b \over a}k' \end{aligned} asinϕk=kλ=aa+bk
a = b , k = 2 k ′ a=b, k=2k' a=b,k=2k,所有偶数级次条纹都缺级。
光栅最小分辨角:
δ λ = 1 k N \delta \lambda = {1 \over kN} δλ=kN1


五、谱线重叠

波长为 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的光谱线,重叠时:
k 1 = λ 2 λ 1 k 2 k_1 = {\lambda_2 \over \lambda_1}k_2 k1=λ1λ2k2


六、多缝衍射

多缝衍射(单缝衍射因子+多缝干涉因子)公式:
I ( θ ) = I 0 2 ( s i n α α ) 2 ( s i n N β s i n β ) 2 α = π λ a s i n θ β = π λ d s i n θ \begin{aligned} I(\theta)&=I_0^2({sin\alpha \over \alpha})^2({sinN\beta \over sin\beta})^2 \\ \alpha&={\pi \over \lambda} a sin\theta \\ \beta&={\pi \over \lambda}dsin\theta \end{aligned} I(θ)αβ=I02(αsinα)2(sinβsin)2=λπasinθ=λπdsinθ


七、马吕斯定律

马吕斯定律

起偏过程:
I 0 = 1 2 I s I_0 = {1 \over 2} I_s I0=21Is
验偏过程:
I = I 0 c o s 2 α I = I_0cos^2\alpha I=I0cos2α


八、布儒斯特定律

反射光与折射光相互垂直,反射光是垂直于入射面震动的完全线偏振光。
t g i b = n 2 n 1 = 1 s i n 临界角 tgi_b = {n_2 \over n_1} = {1 \over sin临界角} tgib=n1n2=sin临界角1
延续布儒斯特角
在第二层介质表面的反射仍然有布儒斯特角的关系延续。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学生山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值