光学
个人做的大学物理常见考点归纳,和学校题库相关,仅供借鉴参考。
一、和差化积
c
o
s
α
c
o
s
β
=
1
2
[
c
o
s
(
α
+
β
)
+
c
o
s
(
α
−
β
)
]
cos\alpha cos\beta={1\over 2}[cos(\alpha+\beta)+cos(\alpha-\beta)]
cosαcosβ=21[cos(α+β)+cos(α−β)]
x
=
2
a
(
1
+
c
o
s
w
0
t
)
c
o
s
m
w
0
t
=
2
a
c
o
s
m
w
0
t
+
a
(
c
o
s
(
m
+
1
)
w
0
t
+
c
o
s
(
m
−
1
)
w
0
t
)
=
a
c
o
s
(
m
−
1
)
w
0
t
+
2
c
o
s
m
w
0
t
+
a
c
o
s
(
m
+
1
)
w
0
t
\begin{aligned} x&=2a(1+cosw_0t)cosmw_0t\\ &=2acosmw_0t+a(cos(m+1)w_0t+cos(m-1)w_0t)\\ &=acos(m-1)w_0t+2cosmw_0t+acos(m+1)w_0t \end{aligned}
x=2a(1+cosw0t)cosmw0t=2acosmw0t+a(cos(m+1)w0t+cos(m−1)w0t)=acos(m−1)w0t+2cosmw0t+acos(m+1)w0t
二、单缝衍射
单缝上下异动,衍射图样不变。
中心图样与入射角方向变化一致。
第
k
k
k级明纹的角宽度和线宽度:
Δ
θ
k
=
λ
b
Δ
x
=
λ
f
b
\begin{aligned}\Delta \theta_k=&{\lambda \over b} \\ \Delta x=&{\lambda f \over b}\end{aligned}
Δθk=Δx=bλbλf
中央明纹角、线宽度均为
2
2
2倍。
光强缝宽关系:
I
∝
b
2
I \propto b^2
I∝b2
三、圆孔衍射
最小分辨角
δ
θ
\delta \theta
δθ,即艾里斑(中央亮光斑)对透镜光心的张角(半角宽度):
δ
θ
=
ϕ
≈
s
i
n
ϕ
=
0.61
λ
R
=
1.22
λ
D
\delta \theta=\phi \approx sin\phi={0.61\lambda \over R}={1.22\lambda \over D}
δθ=ϕ≈sinϕ=R0.61λ=D1.22λ
光学仪器的分辨率为最小分辨角的倒数
1
δ
θ
\Large{1 \over \delta \theta}
δθ1。
四、光栅衍射
是单缝衍射和多缝干涉的双重效果。
斜入射时光栅方程:
(
a
+
b
)
(
s
i
n
θ
+
s
i
n
ϕ
)
=
d
(
s
i
n
θ
+
s
i
n
ϕ
)
=
±
k
λ
(a+b)(sin\theta+sin\phi)=d(sin\theta+sin\phi)=\pm k\lambda
(a+b)(sinθ+sinϕ)=d(sinθ+sinϕ)=±kλ
缺级
k
′
k'
k′为:
a
s
i
n
ϕ
=
k
′
λ
k
=
a
+
b
a
k
′
\begin{aligned} asin\phi&=k'\lambda \\ k&={a+b \over a}k' \end{aligned}
asinϕk=k′λ=aa+bk′
当
a
=
b
,
k
=
2
k
′
a=b, k=2k'
a=b,k=2k′,所有偶数级次条纹都缺级。
光栅最小分辨角:
δ
λ
=
1
k
N
\delta \lambda = {1 \over kN}
δλ=kN1
五、谱线重叠
波长为
λ
1
,
λ
2
\lambda_1,\lambda_2
λ1,λ2的光谱线,重叠时:
k
1
=
λ
2
λ
1
k
2
k_1 = {\lambda_2 \over \lambda_1}k_2
k1=λ1λ2k2
六、多缝衍射
多缝衍射(单缝衍射因子+多缝干涉因子)公式:
I
(
θ
)
=
I
0
2
(
s
i
n
α
α
)
2
(
s
i
n
N
β
s
i
n
β
)
2
α
=
π
λ
a
s
i
n
θ
β
=
π
λ
d
s
i
n
θ
\begin{aligned} I(\theta)&=I_0^2({sin\alpha \over \alpha})^2({sinN\beta \over sin\beta})^2 \\ \alpha&={\pi \over \lambda} a sin\theta \\ \beta&={\pi \over \lambda}dsin\theta \end{aligned}
I(θ)αβ=I02(αsinα)2(sinβsinNβ)2=λπasinθ=λπdsinθ
七、马吕斯定律
起偏过程:
I
0
=
1
2
I
s
I_0 = {1 \over 2} I_s
I0=21Is
验偏过程:
I
=
I
0
c
o
s
2
α
I = I_0cos^2\alpha
I=I0cos2α
八、布儒斯特定律
反射光与折射光相互垂直,反射光是垂直于入射面震动的完全线偏振光。
t
g
i
b
=
n
2
n
1
=
1
s
i
n
临界角
tgi_b = {n_2 \over n_1} = {1 \over sin临界角}
tgib=n1n2=sin临界角1
在第二层介质表面的反射仍然有布儒斯特角的关系延续。