机器学习入门(一)

前言

本人菜狗一个,啥也不懂,但是苦于夏令营面试,还是得来学习一下。
学习课程:
主要是吴承恩的课程:https://www.bilibili.com/video/BV164411b7dx?from=search&seid=4111199140701962956
这里根据课程进度记录一些知识,以便后面复习使用。

名词

监 督 学 习 : s u p u e r v i s e d   l e a r n i n g 监督学习:supuervised\ learning supuervised learning
回 归 问 题 : r e g r e s s i o n   p r o b l e m 回归问题:regression\ problem regression problem
分 类 问 题 : c l a s s i f i c a t i o n   p r o b l e m 分类问题:classification\ problem classification problem
无 监 督 学 习 : u n s u p e r v i s e d   l e a r n i n g 无监督学习:unsupervised\ learning unsupervised learning
代 价 函 数 : c o s t   f u n c t i o n 代价函数:cost\ function cost function
组 合 优 化 : C o m b i n a t o r i a l   O p t i m i z a t i o n 组合优化:Combinatorial\ Optimization :Combinatorial Optimization
最 小 二 乘 法 : o r d i n a r y   l e a s t   s q u a r e s 最小二乘法:ordinary\ least\ squares ordinary least squares
梯 度 下 降 : G r a d i e n t   d e s c e n t 梯度下降:Gradient\ descent Gradient descent
等 高 线 图 : C o u n t o u r   P l o t s 等高线图:Countour\ Plots 线Countour Plots
局 部 最 优 : L o c a l   O p t i m u m 局部最优:Local\ Optimum Local Optimum

P1-P2课程内容

课程中有一些规定:
x ( i ) 代 表 x 列 第 i 行 , y ( i ) x^{(i)}代表x列第i行,y^{(i)} x(i)xiy(i)同理
P1只有一些基础知识,这里直接记录P2线性回归的内容
线性回归主要内容(以只有两个 θ \theta θ变量为例):
Hypothesis: h θ ( x ) = θ 0 + θ 1 x h_\theta(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x
Parameters: θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1
Cost Function: J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2 J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
Goal: m i n i m i z e θ 0 , θ 1 J ( θ 0 , θ 1 ) \underset{\theta_0,\theta_1}{minimize}J(\theta_0,\theta_1) θ0,θ1minimizeJ(θ0,θ1)
解释:线性回归就是利用线性函数来拟合数据,所以Hypothesis就是线性函数的通式,关键在于如何找出 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1两个参数,这里使用的代价函数就是为了找出这两个参数的东西。代价函数有很多,但这个代价函数在线性回归问题里很常用,所以使用它。并且,我们观察式子可以这样认为,当J取值尽量小时,拟合程度越好,所以问题转变为找到最小值,这里通过取其最小值可以办到,下面介绍的梯度下降算法就是求其最优解(值):

梯度下降算法

可以参考这篇文章,更好更详细:
https://www.cnblogs.com/pinard/p/5970503.html
梯度下降算法不仅仅只能应用于上面的那个代价函数,也可以应用于其更一般形式的 J ( θ 0 , θ 1 , θ 2 . . . . ) J(\theta_0,\theta_1,\theta_2....) J(θ0,θ1,θ2....)
这里配合下面的图说明梯度下降算法流程:
在这里插入图片描述

首先解释一下图,Z轴代表的就是J值,所以我们要找到最小值,就是找到最低点。
步骤如下:
在这里插入图片描述
**细节:

  1. θ 0 \theta_0 θ0 θ 1 \theta_1 θ1应该同步更新
  2. 这里的 α \alpha α指定是下降的倍率(步长),决定下降的快慢,要预先设置
  3. θ 0 \theta_0 θ0对应偏导 α φ φ θ 0 J = 1 m ∑ i = 1 m J ( h θ ( x ( i ) ) − y ( i ) ) 2 ∗ 1 \alpha\frac{\varphi}{\varphi\theta_0}J=\frac{1}{m}\sum_{i=1}^mJ(h_\theta(x^{(i)})-y^{(i)})^2*1 αφθ0φJ=m1i=1mJ(hθ(x(i))y(i))21
  4. θ 1 \theta_1 θ1对应偏导 α φ φ θ 1 J = 1 m ∑ i = 1 m J ( h θ ( x ( i ) ) − y ( i ) ) 2 ∗ x \alpha\frac{\varphi}{\varphi\theta_1}J=\frac{1}{m}\sum_{i=1}^mJ(h_\theta(x^{(i)})-y^{(i)})^2*x αφθ1φJ=m1i=1mJ(hθ(x(i))y(i))2x
  5. 注意求和符,可以看出当前点的梯度方向是由所有的样本决定的

**

练习

题目来自于课程的配套习题
博客不是很适合记录,建议参照这个大佬的做一遍:
https://www.heywhale.com/mw/project/5da16a37037db3002d441810
单变量回归:
记录一下代码和结果:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
path='/home/flokken/workspace/Machine_Learning/data_sets/ex1data1.txt'
data=pd.read_csv(path,header=None,names=['Population','Profit'])
data.head()
data.plot(kind='scatter',x='Population',y='Profit',figsize=(12,8))
data.insert(0,'Ones',1)
cols=data.shape[1]
X=data.iloc[:,:-1]
y=data.iloc[:,cols-1:cols]
X=np.matrix(X.values)
y=np.matrix(y.values)
theta=np.matrix(np.array([0,0]))
def computeCost(X,y,theta):
    inner=np.power(((X*theta.T)-y),2)
    return np.sum(inner)/(2*len(X))
alpha=0.01
iters=1500
def gradientDescent(X,y,theta,alpha,iters):
    temp=np.matrix(np.zeros(theta.shape))
    parameters=int(theta.ravel().shape[1])
    cost=np.zeros(iters)
    for i in range(iters):
        error=(X*theta.T)-y
        for j in range(parameters):
            term =np.multiply(error,X[:,j])
            temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term))
        theta =temp
        cost[i]=computeCost(X,y,theta)
    return theta,cost
g,cost=gradientDescent(X,y,theta,alpha,iters)
predict1=[1,3.5]*g.T
predict2=[1,7]*g.T
x=np.linspace(data.Population.min(),data.Population.max(),100)
f=g[0,0]+g[0,1]*x
fig,ax=plt.subplots(figsize=(12,8))
ax.plot(x,f,'r',label='Prediction')
ax.scatter(data.Population,data.Profit,label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()

在这里插入图片描述

多变量回归:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值