Latex杂记

希腊字母表

https://blog.csdn.net/fly_wt/article/details/86569383

数学公式

二重积分:\iint_{D}f(x,y)dxdy即 ∬ D f ( x , y ) d x d y \iint_{D}f(x,y)dxdy Df(x,y)dxdy
三重积分:\iiint_{\Omega}f(x,y,z)dxdydz即 ∭ Ω f ( x , y , z ) d x d y d z \iiint_{\Omega}f(x,y,z)dxdydz Ωf(x,y,z)dxdydz
函数极限:\lim\limits_{x\to0}f(x)=0即 lim ⁡ x → 0 f ( x ) = 0 \lim\limits_{x\to0}f(x)=0 x0limf(x)=0
分子分母:\frac{分子}{分母} 例如\frac{2}{3}即 2 3 \frac{2}{3} 32
求和符号:\sum
将下标放到正下方:使用\underset{\pi}{M}。 M π \underset{\pi}{M} πM
加下标是_,上标是^,加{}可以囊括多个变量,如x_{123}即 x 1 , 2 , 3 x_{1,2,3} x1,2,3
ex: \sum_i ^n为 ∑ i n \sum_i^n in
\iint_{D}^n为 ∬ D n \iint_D^n Dn
今天就用了这么多,后面再补充

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值