polygon本地网络三种方式详细部署教程

本文提供polygon本地网络三种部署方式的详细教程,包括二进制启动IBFT共识和POS共识节点,以及使用Docker搭建POS共识节点。通过初始化节点信息、生成创世文件、运行节点并与其交互,指导读者成功部署和操作polygon本地环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考文档:

  • github:https://github.com/0xPolygon/polygon-edge/releases
  • 官方本地节点搭建文档:https://edge-docs.polygon.technology/docs/get-started/set-up-ibft-locally

一、二进制启动IBFT共识polygon本地网节点

1.1 获取polygon二进制程序

注:共有两种方式获取polygon二进制程序,

  • 直接下载polygon-edg二进制程序
wget https://github.com/0xPolygon/polygon-edge/releases/download/v0.3.3/polygon-edge_0.3.3_linux_amd64.tar.gz
tar zxvf polygon-edge_0.3.3_linux_amd64.tar.gz 
  • 编译polygon-edg
git clone https://github.com/0xPolygon/polygon-edge.git
cd polygon-edge/
go build main.go
<think>嗯,用户之前问的是如何在微信小程序中集成YOLOv7,现在他们转向了YOLOv8,并且引用了站内的一些资料。我需要先回顾之前的对话和引用内容,看看有什么可以复用的部分。 首先,用户之前的回答已经提到了服务端部署模型和小程序调用API的方法,这可能同样适用于YOLOv8。不过YOLOv8可能有新的功能,比如图像分割和姿态估计,所以需要调整步骤。引用[1]提到了一个基于Flask的后台API,支持多种视觉任务,这可能意味着用户希望一个更通用的解决方案。而引用[2]提到了YOLOv8结合Streamlit和Docker部署,可能需要考虑如何将这些整合到小程序中。 接下来,用户现在的问题是如何在微信小程序中集成和使用YOLOv8,要求教程或调用API的方法。我需要确认YOLOv8与YOLOv7在部署上是否有不同之处,比如模型格式、依赖库等。例如,YOLOv8可能已经支持ONNX或TensorFlow Lite,这会影响模型转换的步骤。 另外,用户可能关心性能优化,尤其是YOLOv8相比v7的改进部分。比如,YOLOv8的推理速度是否更快,或者模型更小,这对小程序端的影响是什么?是否需要更多的压缩或量化? 还要考虑引用[2]提到的DeepSORT和姿态估计功能,用户可能希望在小程序中实现这些高级功能,所以回答中需要提到如何扩展API来处理跟踪或分割任务。同时,Docker部署可能是一个重要点,需要补充到部署注意事项里。 需要确保回答的结构和之前类似,分步骤讲解,并提供代码示例。例如,模型转换部分可能需要不同的代码,比如使用Ultralytics官方导出方法。服务端API可能需要调整以适应YOLOv8的输出格式,比如检测、分割、姿态的不同结果处理。 另外,用户可能对本地运行模型感兴趣,比如微信小程序是否支持TensorFlow.js或类似的框架,但考虑到小程序的环境限制,可能还是需要服务端方案。不过可以提到如果有本地推理的需求,可以考虑使用小程序插件或WebAssembly,但可能存在性能问题。 安全性和部署方面,HTTPS是必须的,之前的回答已经提到,但需要再次确认。另外,模型版本管理可能也是一个点,因为YOLOv8可能有多个变体,如nano、small等,如何选择合适的模型进行部署。 最后,相关问题部分需要根据YOLOv8的新功能生成,比如如何处理视频流、如何集成跟踪功能,或者如何优化多任务模型在小程序的表现。</think>#### 微信小程序集成YOLOv8模型的完整解决方案(升级版) --- ### 一、架构设计优化(基于YOLOv8特性) 1. **多任务支持架构** YOLOv8支持目标检测、分割、姿态估计三合一推理,需设计**统一JSON响应格式**: ```json { "detections": [{ "bbox": [x1,y1,x2,y2], "label": "person", "score": 0.95, "mask": [[polygon_points]] // 分割专用 }], "pose": [[x,y,score]] // 姿态估计专用 } ``` 2. **模型转换关键步骤** ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 选择n/s/m/l/x不同版本 # 转换为ONNX格式(支持多任务输出) model.export(format='onnx', dynamic=True, simplify=True) # 转换为TensorRT加速(若使用NVIDIA GPU服务器) model.export(format='engine', device=0) ``` 3. **服务端部署升级** *推荐技术栈*: - **推理引擎**:Ultralytics官方Python库(直接调用`model.predict()`) - **API框架**:FastAPI(比Flask性能提升40%+)[^1] - **任务队列**:Celery+Redis(处理高并发请求) --- ### 二、分步实现流程 #### 1. 服务端核心代码(FastAPI示例) ```python from fastapi import FastAPI, File, UploadFile from ultralytics import YOLO import cv2 import numpy as np app = FastAPI() model = YOLO('yolov8n-seg.pt') # 加载分割模型 @app.post("/detect") async def detect(image: UploadFile = File(...)): img_bytes = await image.read() img = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), cv2.IMREAD_COLOR) # 执行多任务推理 results = model.predict( source=img, conf=0.5, classes=[0], # 只检测人 retina_masks=True # 高精度分割 ) # 结构化返回结果 return { "detections": [{ "bbox": result.boxes.xyxy[0].tolist(), "label": model.names[result.boxes.cls[0].item()], "score": result.boxes.conf[0].item(), "mask": result.masks.xy[0].tolist() if result.masks else [] } for result in results] } ``` #### 2. 小程序端交互优化 ```javascript // 使用WebGL加速渲染 const drawResults = (canvasId, results) => { const ctx = wx.createCanvasContext(canvasId) // 绘制检测框 results.detections.forEach(det => { ctx.setStrokeStyle('#FF3B30') ctx.setLineWidth(2) ctx.strokeRect(...det.bbox) // 绘制分割蒙版(需转换坐标系) if(det.mask.length > 0){ ctx.beginPath() ctx.moveTo(det.mask[0][0], det.mask[0][1]) det.mask.slice(1).forEach(point => { ctx.lineTo(point[0], point[1]) }) ctx.closePath() ctx.setFillStyle('rgba(255,59,48,0.2)') ctx.fill() } }) ctx.draw() } ``` --- ### 三、关键技术突破点 1. **实时视频流处理** 通过**WebSocket长连接**实现视频帧连续传输: ```javascript const ws = wx.connectSocket({ url: 'wss://your-api.com/live' }) const cameraCtx = wx.createCameraContext() cameraCtx.onFrame((frame) => { ws.send({ data: frame.data }) }).start() ``` 2. **模型轻量化方案** - **Tiny版本选择**:`yolov8n`仅3.2MB(量化后) - **动态分辨率**:根据网络质量自动切换640/320输入尺寸 - **WebAssembly加速**:将ONNX Runtime编译为WASM在小程序运行[^2] --- ### 四、部署实践建议 1. **混合云部署架构** ```mermaid graph LR 小程序-->CDN(边缘节点预处理) CDN--高优先级请求-->GPU_Server CDN--常规请求-->TFLite_CPU ``` 2. **安全加固措施** - **JWT鉴权**:所有API请求携带动态Token - **图片水印**:添加隐形数字水印防篡改 - **限流策略**:滑动窗口限制每分钟请求数 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杰哥的技术杂货铺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值