Arweave 出块流程详解


本文详细解释了Arweave网络从用户提交数据到区块被全网保存的整个出块流程。我们将一步步解析这个过程,包括数据存储、矿工打包、验证与共识以及最终的数据永久保存。


1. 用户提交数据存储请求

1.1 用户发起交易

  • 用户准备数据:用户使用Arweave钱包或其他与Arweave集成的应用程序上传想要永久存储的数据(例如文件、图片、文本等)。

  • 打包成交易:用户提交的数据会打包成一个“交易”(Transaction),包括以下内容:

    • 数据:实际要存储的内容(文件、文本、音频等)。
    • 交易信息:包括交易发起者的公钥、交易费用等。
    • 存储费:用户支付一次性永久存储费用(AR代币),费用根据数据大小动态确定。
  • 签名交易:用户用私钥对交易进行数字签名,确保交易的合法性。

1.2 广播交易

  • 广播到网络:签名后的交易被广播到Arweave网络,成为待处理交易(Unconfirmed Transaction),等待矿工打包进区块。

2. 矿工监听并打包交易

2.1 矿工监听交易池

  • 矿工节点监听交易池:Arweave网络中的矿工节点持续监听未确认交易池,挑选合法的交易打包。

2.2 矿工进行工作量证明(Proof of Work, PoW)

  • 工作量证明机制:矿工需要通过计算找到符合一定难度的哈希值,确保出块速度保持在每两分钟左右。

2.3 矿工选择引用历史区块(Block Weave)

  • 区块依赖性链(Block Weave):矿工在创建新区块时,不仅引用前一个最近区块,还引用多个历史区块,确保数据的可访问性和安全性。

  • 引用策略:矿工根据激励机制选择不同历史区块,引用较老的区块可获得更高奖励,因为这些数据可能被其他矿工抛弃。

2.4 打包交易进新区块

  • 打包过程:矿工将用户交易与其他未确认交易一起打包进新区块。新区块包含:
    • 区块头:包括前一区块哈希、工作量证明、时间戳等。
    • 交易列表:用户提交的交易。
    • 数据引用:历史区块的引用信息。

3. 新区块的验证与广播

3.1 新区块广播到网络

  • 矿工节点广播新区块:矿工完成工作量证明后,将新区块广播到全网。

3.2 其他节点验证新区块

  • 多层验证
    • PoW验证:其他节点验证新区块的工作量证明是否有效。
    • 交易验证:验证每笔交易的签名和费用。
    • 存储证明验证:检查新区块中引用的历史区块数据的有效性。

3.3 达成共识

  • 网络共识:当大多数节点确认新区块有效后,新区块正式加入Arweave区块依赖性链。

4. 数据的永久存储与全网确认

4.1 区块永久存储

  • 区块加入Block Weave:一旦新区块被确认,它会永久存储在Arweave的Block Weave结构中。引用机制确保历史区块数据的有效性。

  • 数据不可篡改性:数据一旦存储,任何修改都会导致整个链条的哈希失效,确保数据不可篡改。

4.2 矿工获得奖励

  • 矿工奖励机制:矿工成功打包区块后,获得AR代币奖励,激励矿工参与网络并维护存储数据。

5. 长期数据存取与维护

5.1 存储证明机制(Proof of Access, PoA)

  • 存储证明机制:矿工需证明自己保留了过去区块的数据,未来生成新区块时展示过去区块的一部分数据。

5.2 数据的持续访问

  • 用户数据的永久可访问性:一旦数据存储,任何人都可以通过交易ID在Arweave网络永久访问这些数据。

5.3 无需持续支付

  • 一次性存储费用:用户只需支付一次费用,数据就会永久保存,无需持续付费。

六. 总结

Arweave通过其独特的Block Weave结构,确保用户数据从提交到永久存储的每个过程安全、不可篡改、可访问。用户只需支付一次费用,数据就能永久存储,并且通过引用历史区块,矿工参与维护数据的长期可用性,形成了一个去中心化的永久存储网络。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杰哥的技术杂货铺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值