两数之和(数组、哈希表)
题目介绍
示例:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
提示:
- 2 <= nums.length <= 103
- -109 <= nums[i] <= 109
- -109 <= target <= 109
只会存在一个有效答案
1.python解法
(1)暴力解法
两层循环,比较简单,但超出时间限制范围。
(2)用 Python 中 list 的相关函数求解
方法一:
解题关键主要是想找到 num2 = target - num1,是否也在 list 中,那么就需要运用以下两个方法:
- num2 in nums,返回 True 说明有戏
- nums.index(num2),查找 num2 的索引
def twoSum(nums, target):
lens = len(nums)
j=-1
for i in range(lens):
if (target - nums[i]) in nums:
if (nums.count(target - nums[i]) == 1)&(target - nums[i] == nums[i]):#如果num2=num1,且nums中只出现了一次,说明找到是num1本身。
continue
else:
j = nums.index(target - nums[i],i+1) #index(x,i+1)是从num1后的序列后找num2
break
if j>0:
return [i,j]
else:
return []
执行通过,不过耗时较长,共 1636ms。
方法二:
解题思路是在方法一的基础上,优化解法。想着,num2 的查找并不需要每次从 nums 查找一遍,只需要从 num1 位置之前或之后查找即可。但为了方便 index 这里选择从 num1 位置之前查找:
def twoSum(nums, target):
lens = len(nums)
j=-1
for i in range(1,lens):
temp = nums[:i]
if (target - nums[i]) in temp:
j = temp.index(target - nums[i])
break
if j>=0:
return [j,i]
执行通过,耗时缩短一半多,共 652ms。
(3)用字典模拟哈希求解
方法三:
参考了大神们的解法,通过哈希来求解,这里通过字典来模拟哈希查询的过程。
个人理解这种办法相较于方法一其实就是字典记录了 num1 和 num2 的值和位置,而省了再查找 num2 索引的步骤。
def twoSum(nums, target):
hashmap={}
for ind,num in enumerate(nums):
hashmap[num] = ind
for i,num in enumerate(nums):
j = hashmap.get(target - num)
if j is not None and i!=j:
return [i,j]
通过字典的方法,查找效率快很多,执行速度大幅缩短,共 88ms。
方法四:
类似方法二,不需要 mun2 不需要在整个 dict 中去查找。可以在 num1 之前的 dict 中查找,因此就只需要一次循环可解决。
def twoSum(nums, target):
hashmap={}
for i,num in enumerate(nums):
if hashmap.get(target - num) is not None:
return [i,hashmap.get(target - num)]
hashmap[num] = i #这句不能放在if语句之前,解决list中有重复值或target-num=num的情况
不过方法四相较于方法三的运行速度没有像方法二相较于方法一的速度提升。运行速度在 70ms 多。
2.C++解法
(1)暴力枚举
思路及算法
最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。
当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (nums[i] + nums[j] == target) {
return {i, j};
}
}
}
return {};
}
};
复杂度分析
- 时间复杂度:O(N^2),其中 N 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
- 空间复杂度:O(1)。
(2)哈希表
思路及算法
注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> hashtable;
for (int i = 0; i < nums.size(); ++i) {
auto it = hashtable.find(target - nums[i]);
if (it != hashtable.end()) {
return {it->second, i};
}
hashtable[nums[i]] = i;
}
return {};
}
};
复杂度分析
- 时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)地寻找 target - x。
- 空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。