51nod1049 最大子段和 dp

最大子段和

 N个整数组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。

例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。

 

Input

第1行:整数序列的长度N(2 <= N <= 50000) 
第2 - N + 1行:N个整数(-10^9 <= Aii <= 10^9)

Output

输出最大子段和。

Sample Input

6
-2
11
-4
13
-5
-2

Sample Output

20

思路:

一道简单的dp题,假设ans 是截止到第i - 1项的最大子段和,cnt是第i项前面大于0的子段和,那么对于第i项来说,我们cnt+a[i]来表示加上第i项的子段和,如果cnt大于ans,说明这个子段和更大,那么我们更替ans=cnt,如果此时cnt小于0,那么前面的子段再大也不需要往后继续加了,我们令cnt = 0;直到遍历到最后一项

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#define ll long long
#define mem(a) memset(a,-1,sizeof(a))
using namespace std;
const int maxn = (int)5e4 + 10;
int a[maxn];
int main()
{
	ll ans = 0,cnt = 0;
	int n;
	scanf("%d",&n);
	for (int i = 0;i < n;i ++)
	{
		scanf("%d",&a[i]);
	}
	for (int i = 0;i < n;i ++)
	{
		cnt += a[i];
		if (cnt < 0)
			cnt = 0;
		if (ans < cnt)
			ans = cnt;
	}
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值