最大子段和
N个整数组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N + 1行:N个整数(-10^9 <= Aii <= 10^9)
Output
输出最大子段和。
Sample Input
6 -2 11 -4 13 -5 -2
Sample Output
20
思路:
一道简单的dp题,假设ans 是截止到第i - 1项的最大子段和,cnt是第i项前面大于0的子段和,那么对于第i项来说,我们cnt+a[i]来表示加上第i项的子段和,如果cnt大于ans,说明这个子段和更大,那么我们更替ans=cnt,如果此时cnt小于0,那么前面的子段再大也不需要往后继续加了,我们令cnt = 0;直到遍历到最后一项
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#define ll long long
#define mem(a) memset(a,-1,sizeof(a))
using namespace std;
const int maxn = (int)5e4 + 10;
int a[maxn];
int main()
{
ll ans = 0,cnt = 0;
int n;
scanf("%d",&n);
for (int i = 0;i < n;i ++)
{
scanf("%d",&a[i]);
}
for (int i = 0;i < n;i ++)
{
cnt += a[i];
if (cnt < 0)
cnt = 0;
if (ans < cnt)
ans = cnt;
}
printf("%lld\n",ans);
return 0;
}