1935: [Shoi2007]Tree 园丁的烦恼
Time Limit: 15 Sec Memory Limit: 357 MBSubmit: 819 Solved: 368
[ Submit][ Status][ Discuss]
Description
很久很久以前,在遥远的大陆上有一个美丽的国家。统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草。有一天国王漫步在花园里,若有所思,他问一个园丁道: “最近我在思索一个问题,如果我们把花坛摆成六个六角形,那么……” “那么本质上它是一个深度优先搜索,陛下”,园丁深深地向国王鞠了一躬。 “嗯……我听说有一种怪物叫九头蛇,它非常贪吃苹果树……” “是的,显然这是一道经典的动态规划题,早在N元4002年我们就已经发现了其中的奥秘了,陛下”。 “该死的,你究竟是什么来头?” “陛下息怒,干我们的这行经常莫名其妙地被问到和OI有关的题目,我也是为了预防万一啊!” 王者的尊严受到了伤害,这是不可容忍的。看来一般的难题是难不倒这位园丁的,国王最后打算用车轮战来消耗他的实力: “年轻人,在我的花园里的每一棵树可以用一个整数坐标来表示,一会儿,我的骑士们会来轮番询问你某一个矩阵内有多少树,如果你不能立即答对,你就准备走人吧!”说完,国王气呼呼地先走了。 这下轮到园丁傻眼了,他没有准备过这样的问题。所幸的是,作为“全国园丁保护联盟”的会长——你,可以成为他的最后一根救命稻草。
Input
第一行有两个整数n,m(0≤n≤500000,1≤m≤500000)。n代表皇家花园的树木的总数,m代表骑士们询问的次数。 文件接下来的n行,每行都有两个整数xi,yi,代表第i棵树的坐标(0≤xi,yi≤10000000)。 文件的最后m行,每行都有四个整数aj,bj,cj,dj,表示第j次询问,其中所问的矩形以(aj,bj)为左下坐标,以(cj,dj)为右上坐标。
Output
共输出m行,每行一个整数,即回答国王以(aj,bj)和(cj,dj)为界的矩形里有多少棵树。
Sample Input
3 1
0 0
0 1
1 0
0 0 1 1
0 0
0 1
1 0
0 0 1 1
Sample Output
3
HINT
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 500003
using namespace std;
int n,m,b[N*5],a[N*5],ans1[N][10];
int x[N],y[N],cnt1,cnt2;
int f[N],sz;
struct data
{
int x,y,x1,y1,p;
};data ans[N];
struct node
{
int x,y;
};node pos[N];
struct tr
{
int x,y,id,v;
};tr q[N*5];
int cmp3(tr a,tr b)
{
return a.x<b.x||a.x==b.x&&a.id<b.id;
}
int lowbit(int x)
{
return x&(-x);
}
void change(int x,int v)
{
for (int i=x;i<=cnt2;i+=lowbit(i))
f[i]+=v;
}
int sum(int x)
{
int ans=0;
for (int i=x;i>=1;i-=lowbit(i))
ans+=f[i];
return ans;
}
int main()
{
scanf("%d%d",&n,&m); cnt1=n; cnt2=n;
for (int i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&b[i]);
pos[i].x=a[i]; pos[i].y=b[i];
}
for (int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&ans[i].x,&ans[i].y,&ans[i].x1,&ans[i].y1);
a[++cnt1]=ans[i].x; a[++cnt1]=ans[i].x1;
b[++cnt2]=ans[i].y; b[++cnt2]=ans[i].y1;
ans[i].p=i;
}
sort(a+1,a+cnt1+1); sort(b+1,b+cnt2+1);
cnt1=unique(a+1,a+cnt1+1)-a-1;
cnt2=unique(b+1,b+cnt2+1)-b-1;
for (int i=1;i<=n;i++)
{
pos[i].x=lower_bound(a+1,a+cnt1+1,pos[i].x)-a;
pos[i].y=lower_bound(b+1,b+cnt2+1,pos[i].y)-b;
q[++sz].x=pos[i].x; q[sz].y=pos[i].y;
}
for (int i=1;i<=m;i++)
{
ans[i].x=lower_bound(a+1,a+cnt1+1,ans[i].x)-a;
ans[i].x1=lower_bound(a+1,a+cnt1+1,ans[i].x1)-a;
ans[i].y=lower_bound(b+1,b+cnt2+1,ans[i].y)-b;
ans[i].y1=lower_bound(b+1,b+cnt2+1,ans[i].y1)-b;
}
for (int i=1;i<=m;i++)
{
q[++sz].x=ans[i].x-1; q[sz].y=ans[i].y-1; q[sz].id=i; q[sz].v=1;
q[++sz].x=ans[i].x-1; q[sz].y=ans[i].y1; q[sz].id=i; q[sz].v=2;
q[++sz].x=ans[i].x1; q[sz].y=ans[i].y-1; q[sz].id=i; q[sz].v=3;
q[++sz].x=ans[i].x1; q[sz].y=ans[i].y1; q[sz].id=i; q[sz].v=4;
}
sort(q+1,q+sz+1,cmp3);
for (int i=1;i<=sz;i++)
{
if (!q[i].id) change(q[i].y,1);
else ans1[q[i].id][q[i].v]=sum(q[i].y);
}
for (int i=1;i<=m;i++)
printf("%d\n",ans1[i][4]+ans1[i][1]-ans1[i][2]-ans1[i][3]);
}