题目描述
传送门
题解
这道题刚开始想到的是有上下界的费用流,感觉好麻烦啊,不想写。然后又YY了一种带负权,强制走某些边的方案,结果跑spfa的时候出现了负环==
于是从头开始考虑,对于每个点如果使用了能量爆发模式,那么相当于通过一条不存在的边到达了该点,因为每个点都需要经过至少一次,所以要么是通过某条边到达,要么是用了能量爆发。
对于每个点拆成两个点xi,yi
S->xi 容量为1,费用为0
S->yi 容量为1,费用为vali,能量爆发模式下的花费
yi->T 容量为1,费用为0
xi->yj 可以使用高速航行, 容量为1,费用为边权
代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#define N 1000003
#define inf 1000000000
using namespace std;
int c[N],dis[N],ans;
int tot,nxt[N],point[N],v[N],remain[N],can[N],last[N];
int n,m,val[N],S,T;
void add(int x,int y,int z,int k)
{
tot++; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=z; c[tot]=k;
tot++; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0; c[tot]=-k;
//cout<<x<<" "<<y<<" "<<z<<" "<<k<<endl;
}
int addflow(int s,int t)
{
int now=t; int ans=inf;
while (now!=s) {
ans=min(ans,remain[last[now]]);
now=v[last[now]^1];
}
now=t;
while (now!=s) {
remain[last[now]]-=ans;
remain[last[now]^1]+=ans;
now=v[last[now]^1];
}
return ans;
}
bool spfa(int s,int t)
{
for (int i=s;i<=t;i++) dis[i]=inf,can[i]=0;
dis[s]=0; can[s]=1;
queue<int> p; p.push(s);
while (!p.empty()) {
int now=p.front(); p.pop();
for (int i=point[now];i!=-1;i=nxt[i])
if (dis[v[i]]>dis[now]+c[i]&&remain[i]) {
dis[v[i]]=dis[now]+c[i];
last[v[i]]=i;
if (!can[v[i]]) can[v[i]]=1,p.push(v[i]);
}
can[now]=0;
}
if (dis[t]==inf) return false;
int flow=addflow(s,t);
ans+=dis[t]*flow;
return true;
}
void solve(int s,int t)
{
while (spfa(s,t));
}
int main()
{
scanf("%d%d",&n,&m);
tot=-1;
memset(point,-1,sizeof(point));
for (int i=1;i<=n;i++) scanf("%d",&val[i]);
S=1; T=2*n+2;
for (int i=1;i<=m;i++) {
int x,y,z; scanf("%d%d%d",&x,&y,&z);
if (x>y) swap(x,y);
add(x+1,y+n+1,1,z);
}
for (int i=1;i<=n;i++){
add(S,i+1,1,0); add(S,i+n+1,1,val[i]);
add(i+n+1,T,1,0);
}
solve(S,T);
printf("%d\n",ans);
}