多国警察部队逮捕12名黑客嫌疑人,曾发起 1800 多次勒索软件攻击

欧洲刑警组织上周五宣布逮捕了12名涉嫌参与勒索软件攻击全球关键基础设施的黑客嫌疑人。据信,这些黑客影响到71个国家的1 800多名受害者,据悉,这些攻击者的目标是造成大公司的商业中断。

这些威胁行为者被指控是LockerGoga, MegaCortex and Dharma等勒索软件株部署的幕后黑手,在八个国家的执法部门和司法部门参与的联合行动后,他们被逮捕。

"这些行动于10月26日凌晨在乌克兰和瑞士举行。这些嫌疑人大多被视为高价值目标,因为他们正在不同司法管辖区的多个高调案件中接受调查。"欧洲刑警组织指出。

欧洲刑警组织说,他已经查获了超过52000美元的现金,外加五辆豪车。此外,各当局目前正在对若干电子设备进行法医检查,以确保证据和查明新的调查线索。

逮捕行动由欧洲刑警组织的欧洲网络犯罪中心在欧盟执法机构欧洲司法局的协助下进行协调。这是在挪威、法国、荷兰、乌克兰、联合王国、德国、瑞士和美国当局的帮助下进行的。

攻击者责任

据称,这些黑客涉嫌在有组织犯罪组织中扮演各种角色。他们被认为负责处理对网络的初始访问,使用多种机制来破坏 IT 网络,包括暴力攻击、SQL 注射、被盗凭据和带有恶意附件的网络钓鱼电子邮件。

欧洲刑警组织表示:"一旦进入网络,其中一些网络行为者将专注于横向移动,部署诸如 Trickbot 等恶意软件,或像Cobalt Strike或 PowerShell Empire 这样的开发后框架,以保持未被发现并获得进一步的访问权限。

此外,据称犯罪分子会在受损系统中放置勒索软件数月未被发现,通过部署LockerGoga, MegaCortex and Dharma勒索软件等勒索软件,在计算机受感染之前,寻找网络中的进一步弱点。

"勒索软件攻击的影响是毁灭性的,因为犯罪分子有时间探索未被发现的 IT 网络。然后向受害者出示了一张赎金单,要求受害者用比特币支付赎金,以换取解密密钥,"欧洲刑警组织指出。"许多被讯问的人涉嫌负责清洗赎金,他们会通过混合服务将比特币赎金支付给比特币,然后再兑现不义之财。

多国行动

联合行动由欧洲刑警组织协调。该机构在查明被捕的威胁行为者方面发挥了重要作用,因为受害者位于世界各地的不同地理位置。

联合调查小组(JIT)由法国当局发起,于2019年9月由挪威、法国、联合王国和乌克兰在欧洲正义组织和欧洲刑警组织的财政支持下成立。

欧洲刑警组织指出:"此后,JIT的合作伙伴在荷兰和美国当局进行独立调查的同时,密切合作,揭露这些网络行为者犯罪活动的实际规模和复杂性,以制定联合战略。

原文转自inforisktoday,超级科技翻译,合作站点转载请注明出处和原文译者为超级科技!

Hi,我是超级科技

超级科技是信息安全专家,能无上限防御DDos攻击和CC攻击,阿里云战略合作伙伴!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要进行芝加哥犯罪数据分析,可以使用Spark SQL进行处理。下面是基于Spark SQL的示例代码: ```scala import org.apache.spark.sql.{DataFrame, SparkSession} // 创建SparkSession val spark: SparkSession = SparkSession.builder() .appName("Chicago Crime Analysis") .master("local[*]") .getOrCreate() // 读取芝加哥犯罪数据 val chicagoCrimeData: DataFrame = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("path/to/chicago_crime_data.csv") // 统计每个fbi代码发生的犯罪次数 chicagoCrimeData.groupBy("FBI Code").count().show() // 统计芝加哥市的某种犯罪类型的数量 val primaryType: String = "THEFT" val theftCount: Long = chicagoCrimeData.filter(s"Primary Type='$primaryType'").count() println(s"Total number of $primaryType crimes in Chicago: $theftCount") // 统计每个区域某种犯罪类型的逮捕次数 val arrestCountByArea: DataFrame = chicagoCrimeData .filter(s"Primary Type='$primaryType'") .groupBy("Community Area") .agg(Map("Arrest" -> "sum")) .withColumnRenamed("sum(Arrest)", "Arrest Count") arrestCountByArea.show() ``` 其中,`chicago_crime_data.csv`是芝加哥犯罪数据集的文件路径。我们首先使用`read`方法读取数据,并使用`groupBy`和`count`方法统计每个fbi代码发生的犯罪次数。然后,使用`filter`方法过滤出某种犯罪类型的数据,并使用`count`方法统计该类型犯罪在芝加哥市的总数。最后,使用`groupBy`、`agg`和`withColumnRenamed`方法统计每个区域某种犯罪类型的逮捕次数,并将结果展示出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值