Pro
https://ac.nowcoder.com/acm/contest/33189/A
Sol
先看m=2的情况,容易列出两个式子: w 1 + w 2 × p 1 w_1+w_2\times p_1 w1+w2×p1和 w 2 + w 1 × p 2 w_2+w_1\times p_2 w2+w1×p2,假设前者更大,即1在2的前面,化简式子为:
p 2 − 1 w 2 ≤ p 1 − 1 w 1 \frac{p_2-1}{w_2} \leq\frac{p_1-1}{w_1} w2p2−1≤w1p1−1,但其实不化出这个式子来也没问题,因为为了避免精度问题写重载的时候还要乘回来哈哈哈。
然后就是一个证明(或者说瞎猜)这个结论可以推广到 m > 2 m>2 m>2的情况
贪心按照这个方法排序之后,就可以考虑dp的问题了
通过对题目中给的式子提取公因式可以得到
原式 = w 1 + p 1 × ( w 2 + p 2 × ( w 3 + . . . ) ) 原式=w_1+p_1\times (w_2+p_2\times (w_3+...)) 原式=w1+p1×(w2+p2×(w3+...))
因此通过逆序可以得到状态转移方程为 f i , j = m a x { f i + 1 , j , f i + 1 , j − 1 × p i + w i } f_{i,j}=max\{f_{i+1,j},f_{i+1,j-1}\times p_i+w_i\} fi,j=max{fi+1,j,fi+1,j−1×pi+wi}
是不是有点像01背包了
Code
//By cls1277
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define Fo(i,a,b) for(LL i=(a); i<=(b); i++)
#define Ro(i,b,a) for(LL i=(b); i>=(a); i--)
#define Eo(i,x,_) for(LL i=head[x]; i; i=_[i].next)
#define Ms(a,b) memset((a),(b),sizeof(a))
#define endl '\n'
const LL maxn = 1e5+5;
LL n, m;
double f[maxn][25];
struct Node {
LL w;
double p;
}a[maxn];
bool operator < (const Node &x, const Node &y) {
return (x.w+y.w*x.p>=y.w+x.w*y.p);
}
inline LL read() {
LL x = 0, f = 1;char c = getchar();
while (!isdigit(c)) { if (c == '-')f = -f;c = getchar(); }
while (isdigit(c)) x = (x << 1) + (x << 3) + (c ^ 48ll), c = getchar();
return x * f;
}
int main() {
// ios::sync_with_stdio(false);
// cin.tie(nullptr);
#ifdef DEBUG
freopen("data.txt","r",stdin);
#endif
n=read(); m=read(); // cin>>n>>m;
Fo(i,1,n) a[i].w=read(); //cin>>a[i].w;
Fo(i,1,n) {
LL x; x=read(); //cin>>x;
a[i].p = x*1.0/10000;
}
sort(a+1, a+n+1);
Ro(i,n,1) {
Fo(j,1,m) {
f[i][j] = max(f[i+1][j], f[i+1][j-1]*a[i].p+a[i].w);
}
}
printf("%.16lf",f[1][m]);
return 0;
}