股票数据的读取

上一文,我已经拿到了股票数据。(再次感谢诸位先行者,以及网易财经)

对数据做分析的首步骤,是将数据提取到程序中。

作为一个与数据库毫不相关的老油条,我决定用C#的列表来存储。

(实际上是C#的应用编程要简单点,以及没有数据库的必要)


部分代码,将就看吧。

struct Shares_Data
{
    public string date;
    public string num;
    public float price_top;
    public float price_bottom;
    public float price_last_end;
    public float price_start;
    public float price_end;
    public float ratio_change;
}

private List<Shares_Data> shares_list = new List<Shares_Data>();

public bool GetData(string name)
{
    Shares_Data sh = new Shares_Data();
    StreamReader sr = File.OpenText(path_db + "\\" + name);
    string nextLine;
    while ((nextLine = sr.ReadLine()) != null)
    {
        string[] sArray = Regex.Split(nextLine, ",");
        if (StringToFloat(sArray[3]) > 0)
        {
            sh.date = sArray[0];
            if (tag_date == null)
            {
                tag_date = sh.date;
            }
            sh.num = sArray[1].Substring(1);
            sh.price_top = StringToFloat(sArray[4]);
            sh.price_bottom = StringToFloat(sArray[5]);
            sh.price_last_end = StringToFloat(sArray[7]);
            sh.price_start = StringToFloat(sArray[6]);
            sh.price_end = StringToFloat(sArray[3]);
            sh.ratio_change = StringToFloat(sArray[10]);
            shares_list.Add(sh);
        }
    }
    sr.Close();
    return true;
}

 

 

### 回答1: 要读取通达信股票数据,首先需要安装并导入相关的Python库,例如`pandas`和`re`。 步骤如下: 1. 导入所需的库: ```python import pandas as pd import re ``` 2. 创建一个空的DataFrame来存储数据: ```python df = pd.DataFrame(columns=['日期', '开盘价', '最高价', '最低价', '收盘价', '成交量']) ``` 3. 使用正则表达式找到通信达股票数据文件的路径,然后读取文件: ```python data_path = '通信达股票数据文件路径' with open(data_path, 'r') as file: lines = file.readlines() ``` 4. 遍历文件的每一行数据: ```python for line in lines: if not line.startswith('日期'): # 跳过表头 data_list = re.split(r'\s+', line) # 使用正则表达式分割数据 data_dict = { '日期': data_list[0], '开盘价': data_list[1], '最高价': data_list[2], '最低价': data_list[3], '收盘价': data_list[4], '成交量': data_list[5] } df = df.append(data_dict, ignore_index=True) # 将数据字典添加到DataFrame中 ``` 5. 将DataFrame保存为CSV文件或进行其他操作: ```python df.to_csv('保存路径', index=False) ``` 通过上述步骤,就可以使用Python读取通达信股票数据,并进行进一步的处理和分析。请注意替换代码中的文件路径和保存路径为实际的路径。 ### 回答2: Python可以使用多种方法来读取通达股票数据。以下是一种常见的方法,使用pandas库来读取数据: 首先,需要在Python环境中安装pandas库。可以使用以下命令在命令行中安装pandas: ``` pip install pandas ``` 安装完成后,可以在Python脚本中导入pandas库: ```python import pandas as pd ``` 接下来,可以使用pandas的`read_csv`函数来读取通达股票数据文件。假设数据文件名为`stock_data.csv`,位于当前工作目录下,可以使用以下代码来读取数据: ```python data = pd.read_csv('stock_data.csv') ``` 这将把数据读取到一个pandas的DataFrame对象中,可以通过`data`变量来访问数据。 如果数据文件没有标题行,默认情况下`read_csv`会把第一行作为列名。如果数据文件中有其他列名行,可以使用`header`参数来指定要使用的行号。 除了`read_csv`函数,pandas还提供了一系列函数来读取其他类型的数据文件,例如Excel、JSON等。 读取到的数据可以进行各种操作和分析,例如筛选特定条件的股票数据、计算统计指标、画图等。 总之,使用Python和pandas库可以方便地读取通达股票数据,并对数据进行分析和处理。 ### 回答3: Python可以使用通信达提供的API接口来读取股票数据。 首先,我们需要先注册一个账号并获取API密钥。通过该密钥,我们可以在Python中使用相应的库来进行数据的获取与处理。 接下来,我们导入必要的库,比如requests库用于发送HTTP请求和json库用于解析返回的数据。然后,我们可以使用API的URL来构建请求,并在请求头中添加我们的API密钥。发送请求后,我们可以得到响应数据,并使用json库进行解析。 通信达提供了许多不同的API接口,可以获取股票的基本信息、历史交易数据、实时行情等等。我们可以根据自己的需求选择合适的接口进行数据获取。 例如,如果我们想获取某个股票的实时行情,我们可以使用实时行情接口,并在请求时提供股票代码作为参数。返回的数据中包含了股票的实时价格、涨跌幅等信息。 一旦我们获取到了股票数据,我们可以根据需要进行数据处理和分析。比如,可以计算某个股票的平均价格、最高最低价等统计指标,或者根据数据进行可视化展示。 总之,使用Python可以方便地读取通信达股票数据,通过合适的API接口获取所需的数据,并进行进一步处理和分析。 Python的简洁和灵活使其成为获取和处理股票数据的理想工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值