Scikit-Learn 中文文档
CLZG1
这个作者很懒,什么都没留下…
展开
-
【Scikit-Learn 中文文档】支持向量机 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]14 支持向量机141 分类1411 多元分类1412 得分和概率1413 非均衡问题142 回归143 密度估计 异常novelty检测144 复杂度145 使用诀窍146 核函数1461 自定义核14611 使用 python 函数作为内核14612 使用 Gram 矩阵14613 RBF 内核参数147 数学公式1471翻译 2017-12-06 09:45:07 · 280 阅读 · 0 评论 -
【Scikit-Learn 中文文档】神经网络模块(监督的)- 监督学习 - 用户指南 | ApacheCN
目录(?)[-]117 神经网络模块监督的1171 多层感知器1172 分类1173 回归1174 正则化1175 算法1176 复杂性1177 数学公式1178 实用技巧1179 使用 warm_start 的更多控制中文文档: http://sklearn.apachecn.org/cn/0.19.0/modules/neural_networks_su翻译 2017-11-28 09:02:05 · 407 阅读 · 0 评论 -
【Scikit-Learn 中文文档】概率校准 - 监督学习 - 用户指南 | ApacheCN
文档: http://sklearn.apachecn.org/cn/0.19.0/modules/calibration.html英文文档: http://sklearn.apachecn.org/en/0.19.0/modules/calibration.html官方文档: http://scikit-learn.org/翻译 2017-11-28 09:00:20 · 341 阅读 · 0 评论 -
【Scikit-Learn 中文文档】半监督学习 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]114 半监督学习1141 标签传播中文文档: http://sklearn.apachecn.org/cn/stable/modules/label_propagation.html英文文档: http://sklearn.apachecn.org/en/stable/modules/label_propagation.html翻译 2017-11-28 08:56:52 · 302 阅读 · 0 评论 -
【Scikit-Learn 中文文档】半监督学习 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]114 半监督学习1141 标签传播中文文档: http://sklearn.apachecn.org/cn/stable/modules/label_propagation.html英文文档: http://sklearn.apachecn.org/en/stable/modules/label_propagation.html翻译 2017-11-28 08:55:08 · 328 阅读 · 0 评论 -
【Scikit-Learn 中文文档】特征选择 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]113 特征选择1131 移除低方差特征1132 单变量特征选择1133 递归特征消除1134 使用 SelectFromModel 选取特征11341 基于 L1 的特征选取11342 基于 Tree树的特征选取1135 特征选取作为 pipeline管道的一部分中文文档: http://sklearn.apachecn.org转载 2017-11-27 13:23:42 · 609 阅读 · 0 评论 -
【Scikit-Learn 中文文档】多类和多标签算法 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]112 多类和多标签算法1121 多标签分类格式1122 1对其余11221 多类学习11222 多标签学习1123 1对111231 多类别学习1124 误差校正输出代码11241 多类别学习1125 多输出回归1126 多输出分类1127 链式分类器中文文档: http://sklearn.apache转载 2017-11-27 13:21:50 · 405 阅读 · 0 评论 -
【Scikit-Learn 中文文档】集成方法 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]111 集成方法1111 Bagging meta-estimatorBagging 元估计器1112 由随机树组成的森林11121 随机森林11122 极限随机树11123 参数11124 并行化11125 特征重要性评估11126 完全随机树嵌入1113 AdaBoost11131 使用方法1114 梯度树提升Gradient Tree转载 2017-11-27 13:18:38 · 444 阅读 · 0 评论 -
【Scikit-Learn 中文文档】决策树 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]110 决策树1101 分类1102 回归1103 多值输出问题1104 复杂度分析1105 实际使用技巧1106 决策树算法 ID3 C45 C50 和 CART1107 数学表达11071 分类标准11072 回归标准中文文档: http://sklearn.apachecn.org/cn/stable/modules/tre转载 2017-11-27 13:16:33 · 246 阅读 · 0 评论 -
【Scikit-Learn 中文文档】最近邻 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]16 最近邻161 无监督最近邻1611 找到最近邻1612 KDTree 和 BallTree 类162 最近邻分类163 最近邻回归164 最近邻算法1641 暴力计算1642 K-D 树1643 Ball 树1644 最近邻算法的选择1645 leaf_size 的影响165 最近质心分类1651 最近缩小质心翻译 2017-12-06 09:52:46 · 268 阅读 · 0 评论 -
【Scikit-Learn 中文文档】随机梯度下降 - 监督学习 - 用户指南 | ApacheCN
目录(?)[-]15 随机梯度下降151 分类152 回归153 稀疏数据的随机梯度下降154 复杂度155 实用小贴士156 数学描述1561 SGD157 实现细节中文文档: http://sklearn.apachecn.org/cn/0.19.0/modules/sgd.html英文文档: http://s翻译 2017-12-06 09:50:06 · 357 阅读 · 0 评论 -
【Scikit-Learn 中文文档】高斯混合模型 - 无监督学习 - 用户指南 | ApacheCN
目录(?)[-]21 高斯混合模型211 高斯混合2111 优缺点 GaussianMixture21111 优点21112 缺点2112 选择经典高斯混合模型中的分量数2113 估计算法期望最大化EM212 变分贝叶斯高斯混合2121 估计算法 variational inference21211 优点21212 缺点2122 狄利克雷翻译 2017-11-28 09:03:57 · 423 阅读 · 0 评论