CodeForces 715A. Plus and Square Root(数学,脑洞题)

传送门:http://codeforces.com/problemset/problem/715/A

题目大意:
你在玩一个游戏,游戏机上有一个屏幕,屏幕上有一个数字。还有两个按钮,+和根号。
初始条件下,屏幕数字为2,你在第一关。
两个按钮的作用如下:
加号:若屏幕上的数字为x,你在第k关,则变成x+k。
根号:若屏幕上的数字为x,你在第k关,则必须在x是完全平方数,且开完平方后的数字是x+1的倍数时才可以按下,变成x的平方根,且进入第k+1关。

输入n,求要想过第n关,每一关需按多少+才按根号?

题目分析:

首先读题可以发现出一个隐含条件,当你在第i关的时候,屏幕上的数字一定是i的倍数。
设在第i关时,屏幕上的数字为a[i]时你按下根号键进入i+1关,则a[i]满足以下条件:
1、a[i]是i的倍数。(因为隐含条件)
2、a[i]是 (i+1)2 的倍数。(因为开方之后必须是i+1的倍数,否则不能执行开方操作)
3、a[i]是完全平方数。

根据这三个条件,我们可以令a[i]= i2(i+1)2 ,那么按下根号键时,第i+1关的起始数为i(i+1)。由此推知第i关开始时起始数为i(i-1),每次按加号增加i。因此要想过第n关,需要按加号的次数为 [i2(i+1)2i(i1)]/n 下,注意从第1关到第2关只需按2下,因为第1关的起始数为2而不是 1(11)=0

当然,a[i]不一定必须是这个数,这只是一种构造方式,比如说 i4(i+1)4 也是正确的。因为题中说若有多解输出一个即可,故构造出一个合理的a[i]即可。

这种构造公式的题我也是第一次见,需要重点学习它的思路。即在输出任意解均可以的情况下,只需找到最易构造的解即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n;
ll a;
int main() {
    scanf("%I64d",&n);
    for(ll i=1;i<=n;i++) {
        if(i==1)
            a=2;
        else
            a=i*(i+1)*(i+1)-i+1;
        printf("%I64d\n", a);
    }
}
### Codeforces 1732A Bestie 目解析 对于给定的整数数组 \(a\) 和查询次数 \(q\),每次查询给出两个索引 \(l, r\),需要计算子数组 \([l,r]\) 的最大公约数(GCD)。如果 GCD 结果为 1,则返回 "YES";否则返回 "NO"[^4]。 #### 解决方案概述 为了高效解决这个问,可以预先处理数据以便快速响应多个查询。具体方法如下: - **预处理阶段**:构建辅助结构来存储每一对可能区间的 GCD 值。 - **查询阶段**:利用已有的辅助结构,在常量时间内完成每个查询。 然而,考虑到内存限制以及效率问,直接保存所有区间的结果并不现实。因此采用更优化的方法——稀疏表(Sparse Table),它允许 O(1) 时间内求任意连续子序列的最大值/最小值/GCD等问,并且支持静态RMQ(Range Minimum Query)/RANGE_GCD等操作。 #### 实现细节 ##### 构建稀疏表 通过动态规划的方式填充二维表格 `st`,其中 `st[i][j]` 表示从位置 i 开始长度为 \(2^j\) 的子串的最大公约数值。初始化时只需考虑单元素情况即 j=0 的情形,之后逐步扩展至更大的范围直到覆盖整个输入序列。 ```cpp const int MAXN = 2e5 + 5; int st[MAXN][20]; // Sparse table for storing precomputed results. vector<int> nums; void build_sparse_table() { memset(st,-1,sizeof(st)); // Initialize the base case where interval length is one element only. for(int i = 0 ;i < nums.size(); ++i){ st[i][0]=nums[i]; } // Fill up sparse table using previously computed values. for (int j = 1;(1 << j)<=nums.size();++j){ for (int i = 0;i+(1<<j)-1<nums.size();++i){ if(i==0 || st[i][j-1]!=-1 && st[i+(1<<(j-1))][j-1]!=-1) st[i][j]=__gcd(st[i][j-1],st[i+(1<<(j-1))][j-1]); } } } ``` ##### 处理查询请求 当接收到具体的 l 和 r 参数后,可以通过查找对应的 log₂(r-l+1) 来定位合适的跳跃步长 k ,进而组合得到最终答案。 ```cpp string query(int L,int R){ int K=(int)(log2(R-L+1)); return __gcd(st[L][K],st[R-(1<<K)+1][K])==1?"YES":"NO"; } ``` 这种方法能在较短时间内完成大量查询任务的同时保持较低的空间开销,非常适合本设定下的性能需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值