基于LRW-1000(CAS-VSR-W1k)数据集来进行中文唇语数据集识别任务 中文唇语识别数据集。唇语识别数据。公开唇语识别数据。

基于LRW-1000(CAS-VSR-W1k)数据集来进行中文唇语数据集识别任务以构建一个全面的唇语识别系统,包括数据集准备、模型定义、训练和结果评估。以下是所有相关的代码文件在这里插入图片描述

LRW-1000(又叫CAS-VSR-W1k)
中文唇语识别数据集。
目前最大的中文公开唇语识别数据。
数据来之不易
可以直接使用。
可用于训练数字人 wav2lip等
在这里插入图片描述

基于LRW-1000(CAS-VSR-W1k)数据集来进行中文唇语识别任务。,适合用于训练数字人、Wav2Lip等应用。
在这里插入图片描述

以下文章的代码仅供参考:

环境准备

确保您已经安装了以下软件和库:

  • Python 3.8 或更高版本
  • PyTorch 1.9 或更高版本
  • torchvision 0.10 或更高版本
  • OpenCV
  • numpy
  • pandas
  • matplotlib
  • librosa(用于音频处理)
  • moviepy(用于视频处理)

您可以使用以下命令安装所需的Python库:

pip install torch torchvision opencv-python numpy pandas matplotlib librosa moviepy

数据集准备

假设您的数据集已经下载并组织好,并且包含训练集、验证集和测试集。以下是数据集的预期结构:

datasets/
└── lrw_1000/
    ├── videos/
    │   ├── train/
    │   ├── val/
    │   └── test/
    └── transcripts/
        ├── train.txt
        ├── val.txt
        └── test.txt
数据集文件说明
  • videos/ 目录包含所有的视频文件。
  • transcripts/ 目录包含每个视频的转录文本。

模型选择

我们将使用一个预训练的模型进行微调。这里我们选择一个常用的唇语识别模型,例如 AV-Sync 或者 Vid2Speech。为了简化流程,我们将使用 AV-Sync 模型。

下载预训练模型

首先,我们需要下载预训练的 AV-Sync 模型权重。可以从 AV-Sync GitHub 获取预训练模型。

安装 AV-Sync

克隆 AV-Sync 仓库并设置环境:

git clone https://github.com/microsoft/av-sync.git
cd av-sync
pip install -r requirements.txt

配置文件

创建一个配置文件来定义训练参数和其他设置。以下是一个示例配置文件 config.yaml

[<title="Configuration File for Lip Reading">]
# Configuration file for lip reading task using AV-Sync

# Data paths
data_root: '../datasets/lrw_1000/'

# Model settings
model_name: 'av_sync'
pretrained_weights: './pretrained_weights/av_sync.pth'

# Training settings
batch_size: 16
num_workers: 4
learning_rate: 0.001
num_epochs: 50
log_interval: 10

# Dataset settings
train_split: 'train.txt'
val_split: 'val.txt'
test_split: 'test.txt'

# Other settings
device: 'cuda'  # or 'cpu'

数据加载和预处理

我们需要编写数据加载和预处理脚本。以下是一个示例脚本 dataset.py:

[<title="Dataset Loader and Preprocessor">]
import os
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
import librosa
from moviepy.editor import VideoFileClip

class LRWDataset(Dataset):
    def __init__(self, data_root, split_file, transform=None):
        self.data_root = data_root
        self.split_file = split_file
        self.transform = transform
        self.samples = self._load_samples()
    
    def _load_samples(self):
        samples = []
        with open(os.path.join(self.data_root, 'transcripts', self.split_file), 'r') as f:
            for line in f:
                video_path, transcript = line.strip().split(' ', 1)
                samples.append((video_path, transcript))
        return samples
    
    def __len__(self):
        return len(self.samples)
    
    def __getitem__(self, idx):
        video_path, transcript = self.samples[idx]
        video_frames = self._extract_video_frames(video_path)
        audio_features = self._extract_audio_features(video_path)
        
        if self.transform:
            video_frames = self.transform(video_frames)
        
        return video_frames, audio_features, transcript
    
    def _extract_video_frames(self, video_path):
        frames = []
        cap = cv2.VideoCapture(os.path.join(self.data_root, 'videos', video_path))
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame)
        cap.release()
        return np.array(frames)
    
    def _extract_audio_features(self, video_path):
        video_clip = VideoFileClip(os.path.join(self.data_root, 'videos', video_path))
        audio_signal = video_clip.audio.to_soundarray(fps=16000)
        mel_spectrogram = librosa.feature.melspectrogram(y=audio_signal.mean(axis=1), sr=16000, n_mels=80)
        log_mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
        return log_mel_spectrogram.T

# Example usage
if __name__ == '__main__':
    dataset = LRWDataset(data_root='../datasets/lrw_1000/', split_file='train.txt')
    sample = dataset[0]
    print(sample[0].shape, sample[1].shape, sample[2])

模型定义

我们将使用 AV-Sync 模型进行微调。以下是一个示例模型定义 model.py:

[<title="Model Definition for Lip Reading">]
import torch
import torch.nn as nn
import torchvision.models as models

class AVSync(nn.Module):
    def __init__(self, num_classes=1000, pretrained=True):
        super(AVSync, self).__init__()
        self.visual_model = models.resnet18(pretrained=pretrained)
        self.visual_model.fc = nn.Linear(self.visual_model.fc.in_features, 256)
        
        self.audio_model = nn.Sequential(
            nn.Conv1d(80, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=2, stride=2),
            nn.Conv1d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.Linear(256 * 25, 256),
            nn.ReLU()
        )
        
        self.fusion_layer = nn.Sequential(
            nn.Linear(512, 256),
            nn.ReLU(),
            nn.Linear(256, num_classes)
        )
    
    def forward(self, visual_input, audio_input):
        visual_output = self.visual_model(visual_input)
        audio_output = self.audio_model(audio_input)
        fusion_output = torch.cat((visual_output, audio_output), dim=1)
        output = self.fusion_layer(fusion_output)
        return output

# Example usage
if __name__ == '__main__':
    model = AVSync(num_classes=1000)
    visual_input = torch.randn(16, 3, 224, 224)  # Batch size of 16, 3 channels, 224x224 images
    audio_input = torch.randn(16, 80, 100)       # Batch size of 16, 80 mel bins, 100 frames
    output = model(visual_input, audio_input)
    print(output.shape)

训练脚本

编写训练脚本来训练模型。以下是一个示例训练脚本 train.py:

[<title="Training Script for Lip Reading">]
import os
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import LRWDataset
from model import AVSync
import yaml
from tqdm import tqdm

def load_config(config_path):
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    return config

def main():
    config = load_config('config.yaml')
    
    device = torch.device(config['device'])
    
    # Create datasets and dataloaders
    train_dataset = LRWDataset(data_root=config['data_root'], split_file=config['train_split'])
    val_dataset = LRWDataset(data_root=config['data_root'], split_file=config['val_split'])
    
    train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, num_workers=config['num_workers'])
    val_loader = DataLoader(val_dataset, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'])
    
    # Create model
    model = AVSync(num_classes=1000, pretrained=True)
    model.to(device)
    
    # Load pretrained weights
    if config['pretrained_weights']:
        state_dict = torch.load(config['pretrained_weights'])
        model.load_state_dict(state_dict, strict=False)
    
    # Define loss function and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
    
    # Training loop
    for epoch in range(config['num_epochs']):
        model.train()
        running_loss = 0.0
        for i, (video_frames, audio_features, transcripts) in enumerate(tqdm(train_loader)):
            video_frames = video_frames.permute(0, 3, 1, 2).to(device)  # Reshape to (batch_size, C, H, W)
            audio_features = audio_features.transpose(1, 2).to(device)   # Reshape to (batch_size, C, L)
            
            optimizer.zero_grad()
            outputs = model(video_frames, audio_features)
            targets = torch.tensor([int(transcript) for transcript in transcripts], dtype=torch.long).to(device)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
            if i % config['log_interval'] == 0:
                print(f'Epoch [{epoch+1}/{config["num_epochs"]}], Step [{i+1}/{len(train_loader)}], Loss: {running_loss/config["log_interval"]:.4f}')
                running_loss = 0.0
        
        # Validation
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for video_frames, audio_features, transcripts in tqdm(val_loader):
                video_frames = video_frames.permute(0, 3, 1, 2).to(device)  # Reshape to (batch_size, C, H, W)
                audio_features = audio_features.transpose(1, 2).to(device)   # Reshape to (batch_size, C, L)
                
                outputs = model(video_frames, audio_features)
                _, predicted = torch.max(outputs.data, 1)
                targets = torch.tensor([int(transcript) for transcript in transcripts], dtype=torch.long).to(device)
                total += targets.size(0)
                correct += (predicted == targets).sum().item()
        
        accuracy = 100 * correct / total
        print(f'Validation Accuracy: {accuracy:.2f}%')
    
    # Save the trained model
    torch.save(model.state_dict(), 'runs/train/exp/best.pt')

if __name__ == '__main__':
    main()

结果评估

训练完成后,可以使用以下脚本评估模型性能:

[<title="Evaluation Script for Lip Reading">]
import os
import torch
from torch.utils.data import DataLoader
from dataset import LRWDataset
from model import AVSync
import yaml
from tqdm import tqdm

def load_config(config_path):
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    return config

def evaluate_model(model, dataloader, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for video_frames, audio_features, transcripts in tqdm(dataloader):
            video_frames = video_frames.permute(0, 3, 1, 2).to(device)  # Reshape to (batch_size, C, H, W)
            audio_features = audio_features.transpose(1, 2).to(device)   # Reshape to (batch_size, C, L)
            
            outputs = model(video_frames, audio_features)
            _, predicted = torch.max(outputs.data, 1)
            targets = torch.tensor([int(transcript) for transcript in transcripts], dtype=torch.long).to(device)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()
    
    accuracy = 100 * correct / total
    print(f'Test Accuracy: {accuracy:.2f}%')

def main():
    config = load_config('config.yaml')
    
    device = torch.device(config['device'])
    
    # Create dataset and dataloader
    test_dataset = LRWDataset(data_root=config['data_root'], split_file=config['test_split'])
    test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, num_workers=config['num_workers'])
    
    # Create model
    model = AVSync(num_classes=1000, pretrained=False)
    model.to(device)
    
    # Load trained weights
    model.load_state_dict(torch.load('runs/train/exp/best.pt'))
    
    # Evaluate model
    evaluate_model(model, test_loader, device)

if __name__ == '__main__':
    main()

使用说明

  1. 配置路径

    • 确保 datasets/lrw_1000/ 目录结构正确。
    • 确保 config.yaml 中的路径和设置正确。
  2. 运行脚本

    • 在终端中依次运行训练脚本和评估脚本。
  3. 注意事项

    • 根据需要调整超参数和训练设置。
    • 可以通过修改 config.yaml 中的模型架构和其他参数来优化模型性能。

示例

假设您的数据集文件夹结构如下:

datasets/
└── lrw_1000/
    ├── videos/
    │   ├── train/
    │   ├── val/
    │   └── test/
    └── transcripts/
        ├── train.txt
        ├── val.txt
        └── test.txt

并且 transcripts/ 目录中的 .txt 文件包含每个视频的路径和对应的类别索引。运行上述脚本后,您可以查看训练日志和最终的模型权重文件。在这里插入图片描述

总结

通过上述步骤,我们可以构建一个全面的唇语识别系统,包括数据集准备、模型定义、训练和结果评估。以下是所有相关的代码文件:

  1. 配置文件 (config.yaml)
  2. 数据加载和预处理脚本 (dataset.py)
  3. 模型定义脚本 (model.py)
  4. 训练脚本 (train.py)
  5. 评估脚本 (eval.py)
LRW-1000 数据集是一个大规模的普通话词汇级别的语数合,被设计用来支持机器学习特别是深度学习模型的研究和发展。这个数据集包括了超过70万条样本,覆盖了1,000个不同的词汇类别。 对于想要了解 LRW-1000 示例及用法的人来说,以下是几种方式来探索和应用此数据集: 利用官方提供的文档和指南 官方网站或者发布者通常会提供详细的说明文件,其中可能包含如何加载数据、预处理步骤以及一些基本的数据可视化例子。这些资源非常适合初学者理解数据结构及其潜在用途。 参考学术文献中的实现案例 许多研究人员会在他们的论文中描述他们是如何使用 LRW-1000 进行实验的具体细节。例如,在《LRW-1000: A Naturally-Distributed Large-Scale Benchmark for Lip Reading in the Wild》这篇论文里就介绍了创建该数据库的目的,并给出了几个典型的应用场景和技术挑战。 参与在线社区交流与教程分享 像 GitHub、CSDN 博客等平台上有不少开发者分享关于 LRW-1000 的实际编码经验和个人见解的文章或帖子。通过加入这样的社群,可以获得一手的信息并且与其他爱好者互动解决问题。 尝试开源项目实例 GitHub 上存在多个基于 LRW-1000 开发的开源项目,它们往往附带完整的源码甚至训练好的模型权重。这对于希望快速启动项目的个人来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值