洛谷[P1803 凌乱的yyy / 线段覆盖] {贪心}
题目背景
快 noip 了,yyy 很紧张!
题目描述
现在各大 oj 上有 nn 个比赛,每个比赛的开始、结束的时间点是知道的。
yyy 认为,参加越多的比赛,noip 就能考的越好(假的)。
所以,他想知道他最多能参加几个比赛。
由于 yyy 是蒟蒻,如果要参加一个比赛必须善始善终,而且不能同时参加 22 个及以上的比赛。
输入格式
第一行是一个整数 n ,接下来 n 行每行是 2 个整数 ai,bi(ai<bi) ,表示比赛开始、结束的时间。
输出格式
一个整数最多参加的比赛数目。
输入输出样例
输入:
3
0 2
2 4
1 3
输出:
2
说明/提示
对于 20% 的数据,n≤10。
对于 50% 的数据,n≤
1
0
3
10^3
103。
对于 70% 的数据, n≤
1
0
5
10^5
105。
对于100% 的数据,1≤n≤
1
0
6
10^6
106 ,0≤ai≤bi≤n≤
1
0
6
10^6
106。
思路
首先,根据题意可知是典型的区间贪心问题,目的在于在有限的时间内选取出尽量多的比赛。
区间贪心问题解题方法:
首先要设置结构体将输入的数据存入对应的结构体中。
之后如果左端点(x)不相等时,按照左端点从大到小排序,左端点如果相同就从小到大排序。
int cmp(node a,node b)
{
if(a.x!=b.x) return a.x>b.x;//先排x再排y
else return a.y>b.y;
}
经过上述处理之后,只要保证下一个活动开始时间(即x)大于等于上一个活动结束时间(即y)就可以保证可以参加该活动了。
完整代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
struct node//设置结构体
{
int x,y;
}game[maxn];
int cmp(node a,node b)
{
if(a.x!=b.x) return a.x>b.x;//先排x再排y
else return a.y>b.y;
}
int main()
{
int m,count=1,j=0;//count用来记录可参加比赛的场次 ,j要来标记当前参加比赛
scanf("%d",&m);
for(int i=0;i<m;i++)
{
scanf("%d %d",&game[i].x,&game[i].y);
}
sort(game,game+m,cmp);//排序
for(int i=1;i<m;i++)
{
if(game[i].y<=game[j].x)
{
count++;//计入可参加的活动次数
j=i;//将该活动设置为当前参加活动
}
}
printf("%d",count);
return 0;
}