洛谷[P1803 凌乱的yyy / 线段覆盖] {贪心} 奋斗的珂珂~

洛谷[P1803 凌乱的yyy / 线段覆盖] {贪心}

题目背景

快 noip 了,yyy 很紧张!

题目描述

现在各大 oj 上有 nn 个比赛,每个比赛的开始、结束的时间点是知道的。
yyy 认为,参加越多的比赛,noip 就能考的越好(假的)。
所以,他想知道他最多能参加几个比赛。
由于 yyy 是蒟蒻,如果要参加一个比赛必须善始善终,而且不能同时参加 22 个及以上的比赛。

输入格式

第一行是一个整数 n ,接下来 n 行每行是 2 个整数 ai,bi(ai<bi) ,表示比赛开始、结束的时间。

输出格式

一个整数最多参加的比赛数目。

输入输出样例

输入:
3
0 2
2 4
1 3
输出:
2

说明/提示

对于 20% 的数据,n≤10。
对于 50% 的数据,n≤ 1 0 3 10^3 103
对于 70% 的数据, n≤ 1 0 5 10^5 105
对于100% 的数据,1≤n≤ 1 0 6 10^6 106 ,0≤ai≤bi≤n≤ 1 0 6 10^6 106

思路

首先,根据题意可知是典型的区间贪心问题,目的在于在有限的时间内选取出尽量多的比赛。

区间贪心问题解题方法:

首先要设置结构体将输入的数据存入对应的结构体中。

之后如果左端点(x)不相等时,按照左端点从大到小排序,左端点如果相同就从小到大排序。

int cmp(node a,node b)
{
	if(a.x!=b.x) return a.x>b.x;//先排x再排y 
	else return a.y>b.y;
}

经过上述处理之后,只要保证下一个活动开始时间(即x)大于等于上一个活动结束时间(即y)就可以保证可以参加该活动了。

完整代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;

struct node//设置结构体
{
	int x,y;
}game[maxn];

int cmp(node a,node b)
{
	if(a.x!=b.x) return a.x>b.x;//先排x再排y 
	else return a.y>b.y;
}
 
int main()
{
	int m,count=1,j=0;//count用来记录可参加比赛的场次 ,j要来标记当前参加比赛 
	scanf("%d",&m);
	for(int i=0;i<m;i++)
	{
		scanf("%d %d",&game[i].x,&game[i].y); 
	}
	sort(game,game+m,cmp);//排序 
	for(int i=1;i<m;i++)
	{
		if(game[i].y<=game[j].x)
		 {
		   count++;//计入可参加的活动次数 
		   j=i;//将该活动设置为当前参加活动 
       	}
	 } 
	 printf("%d",count);
	 return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我们可以使用“最小公倍数”来解决这个问题。 首先,我们需要找出满足条件的第一本书的下标,也就是最小的正整数 $n$,使得 $n \equiv 1 \pmod{3}$ 且 $n \equiv 0 \pmod{4}$。可以发现,这个 $n$ 就是 $lcm(3, 4) = 12$。 接下来,我们可以列出一系列的方程: \begin{aligned} x &\equiv n \pmod{3} \\ x &\equiv n-3 \pmod{3} \\ &\vdots \\ x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \\ x &\equiv 4 \pmod{4} \\ &\vdots \\ x &\equiv 0 \pmod{4} \end{aligned} 其中,第一个方程表示 $x$ 和第一本书的间隔是 $3$,第二个方程表示 $x$ 和第四本书的间隔是 $3$,以此类推,直到最后一个方程表示 $x$ 和最后一本书的间隔是 $4$。 根据中国剩余定理,这个方程组有唯一解 $x$,满足 $1 \leq x \leq N$,其中 $N$ 是所有书的数量。因此,我们只需要检查 $x$ 和 $x-3$ 是否都是喜欢的书,以及 $x$ 和 $x-4$ 是否都是乐乐喜欢的书,即可确定有多少本书是他们共同爱好的。 注意到这个方程组中有很多重复的方程,我们可以使用扩展中国剩余定理来加速计算。具体来说,我们可以将方程组拆成两个子系统: \begin{aligned} x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 和 \begin{aligned} x &\equiv 4 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 分别求出它们的唯一解 $x_1$ 和 $x_2$,然后使用扩展欧几里得算法求出一个特解 $x_0$ 和 $M$,满足 $x_0 \equiv x_1 \pmod{3 \cdot 4}$,$x_0 \equiv x_2 \pmod{3 \cdot 4}$,$M = lcm(3, 4)$。最后,我们可以得到方程组的通解: $$ x \equiv x_0 + kM \pmod{3 \cdot 4} $$ 其中 $k$ 是任意整数。我们只需要枚举 $k$,检查 $x$ 是否符合条件即可。时间复杂度为 $O(\log N)$。 综上所述,他们共同爱好的书的数量为 $\lfloor \frac{N-x_0}{M} \rfloor$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值