洛谷[P3397 地毯] {前缀和与差分:二维差分}
题目背景
此题约为NOIP提高组Day2T1难度。
题目描述
在n * n的格子上有m个地毯。
给出这些地毯的信息,问每个点被多少个地毯覆盖。
输入格式
第一行,两个正整数n、m。意义如题所述。
接下来m行,每行两个坐标(x1,y1)和(x2,y2),代表一块地毯,左上角是(x1,y1),右下角是(x2,y2)。
输出格式
输出n行,每行n个正整数。
第i行第j列的正整数表示(i,j)这个格子被多少个地毯覆盖。
输入输出样例
输入 #1
5 3
2 2 3 3
3 3 5 5
1 2 1 4
输出 #1
0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1
说明/提示
数据范围
对于20%的数据,有n<=50,m<=100。
对于100%的数据,有n<=1000,m<=1000。
解题思路
一维差分应用在对于子序列中的每一个数加一个数的操作。再看本题,则是对二维子矩阵中的每一个元素进行加1的操作。本题算是简化了,因为初始数组中每个元素的值均为0。每次增加的值均为1.
二维差分我找到了一个讲解很不错的博客:https://blog.csdn.net/justidle/article/details/104506724下面是本题的代码。
完整代码
#include<bits/stdc++.h>
using namespace std;
int a[1010][1010];
int main()
{
int n,m;
memset(a,0,sizeof(a));
scanf("%d %d",&n,&m);
int x1,x2,y1,y2;
while(m--)//二维差分模板
{
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
a[x1][y1]+=1;
a[x1][y2+1]-=1;
a[x2+1][y1]-=1;
a[x2+1][y2+1]+=1;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
a[i][j]=a[i][j]+a[i-1][j]+a[i][j-1]-a[i-1][j-1];//差分
printf("%d ",a[i][j]);
}
printf("\n");
}
return 0;
}