洛谷[P3406 海底高铁] {前缀和与差分} 奋斗的珂珂~

洛谷[P3406 海底高铁] {前缀和与差分}

题目背景

大东亚海底隧道连接着厦门、新北、博艾、那霸、鹿儿岛等城市,横穿东海,耗资1000亿博艾元,历时15年,于公元2058年建成。凭借该隧道,从厦门可以乘坐火车直达台湾、博艾和日本,全程只需要4个小时。

题目描述

该铁路经过N个城市,每个城市都有一个站。不过,由于各个城市之间不能协调好,于是乘车每经过两个相邻的城市之间(方向不限),必须单独购买这一小段的车票。第i段铁路连接了城市i和城市i+1(1<=i<N)。如果搭乘的比较远,需要购买多张车票。第i段铁路购买纸质单程票需要Ai博艾元。

虽然一些事情没有协调好,各段铁路公司也为了方便乘客,推出了IC卡。对于第i段铁路,需要花Ci博艾元的工本费购买一张IC卡,然后乘坐这段铁路一次就只要扣Bi(Bi<Ai)元。IC卡可以提前购买,有钱就可以从网上买得到,而不需要亲自去对应的城市购买。工本费不能退,也不能购买车票。每张卡都可以充值任意数额。对于第i段铁路的IC卡,无法乘坐别的铁路的车。

Uim现在需要出差,要去M个城市,从城市P1出发分别按照P1,P2,P3…PM的顺序访问各个城市,可能会多次访问一个城市,且相邻访问的城市位置不一定相邻,而且不会是同一个城市。

现在他希望知道,出差结束后,至少会花掉多少的钱,包括购买纸质车票、买卡和充值的总费用。

输入格式

第一行两个整数,N,M。

接下来一行,M个数字,表示Pi

接下来N-1行,表示第i段铁路的Ai,Bi,Ci

输出格式

一个整数,表示最少花费

输入输出样例

输入
9 10
3 1 4 1 5 9 2 6 5 3
200 100 50
300 299 100
500 200 500
345 234 123
100 50 100
600 100 1
450 400 80
2 1 10
输出
6394

说明/提示

2到3以及8到9买票,其余买卡。

对于30%数据 M=2

对于另外30%数据 N<=1000 ,M<=1000

对于100%的数据 M,N<=100000,Ai,Bi,Ci<=100000

解题思路

     这道题最难搞之处就在于它的题意,只要看懂题目说明,其实就是简单的前缀和与差分

首先,我们来分析题意,题目中说明由第i城市到达第i+1城市的纸质车票价钱是a[i],办理IC卡的价钱是c[i],在办理IC卡之后再购买车票的花销是b[i]。

之后看访问的城市,题目中说明由第i个城市到第i+1个城市的的车票价钱是一定的,也就是说无论是正向还是反向的开销都是一定的eg:从城市2到达城市3与从城市3到达城市2的开销是相等的。

最后思路就是对于给出的到访城市进行差分,再求出前缀和,进而得到到达该城市的次数。

分析测试样例

如图所示:列代表城市,行代表访问路径。
在这里插入图片描述

完整代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10; 
long long  a[maxn],b[maxn],c[maxn];//注意long long,最后三个测试点会卡数据类型 
int visit[maxn],num[maxn];//visit表示访问的车站,num代表第i个车站被经过的次数 

int main()
{
	int N,M;
	scanf("%d %d",&N,&M);//N个城市,M个访问 
	for(int i=1;i<=M;i++)
	{
		scanf("%d",&visit[i]);
	}
	for(int i=1;i<=N-1;i++)
	{
		scanf("%lld %lld %lld",&a[i],&b[i],&c[i]);
	}
	for(int i=1;i<=M-1;i++)//使用差分对于每一个经过的区间的车站经过次数加1 
	{
		num[min(visit[i],visit[i+1])]++;
		num[max(visit[i],visit[i+1])]--; 
	}
	for(int i=1;i<=N-1;i++)
	{
		num[i]=num[i-1]+num[i];//前缀和,因为最初每个车站经过次数是0,所以直接进行求解就可以 
	}
//	for(int i=1;i<=N-1;i++)
//	{
//		printf("%d",num[i]);//输出每个车站经过的次数 
//	}
	long long ans=0;
	for(int i=1;i<=N-1;i++)
	{
		ans+=min(a[i]*num[i],b[i]*num[i]+c[i]);//将是否购买IC卡与直接购买纸质车票所消耗的费用进行比较 
	}
	printf("%lld",ans);
	return 0;	
}
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
我们可以使用“最小公倍数”来解决这个问题。 首先,我们需要找出满足条件的第一本书的下标,也就是最小的正整数 $n$,使得 $n \equiv 1 \pmod{3}$ 且 $n \equiv 0 \pmod{4}$。可以发现,这个 $n$ 就是 $lcm(3, 4) = 12$。 接下来,我们可以列出一系列的方程: \begin{aligned} x &\equiv n \pmod{3} \\ x &\equiv n-3 \pmod{3} \\ &\vdots \\ x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \\ x &\equiv 4 \pmod{4} \\ &\vdots \\ x &\equiv 0 \pmod{4} \end{aligned} 其中,第一个方程表示 $x$ 和第一本书的间隔是 $3$,第二个方程表示 $x$ 和第四本书的间隔是 $3$,以此类推,直到最后一个方程表示 $x$ 和最后一本书的间隔是 $4$。 根据中国剩余定理,这个方程组有唯一解 $x$,满足 $1 \leq x \leq N$,其中 $N$ 是所有书的数量。因此,我们只需要检查 $x$ 和 $x-3$ 是否都是喜欢的书,以及 $x$ 和 $x-4$ 是否都是乐乐喜欢的书,即可确定有多少本书是他们共同爱好的。 注意到这个方程组中有很多重复的方程,我们可以使用扩展中国剩余定理来加速计算。具体来说,我们可以将方程组拆成两个子系统: \begin{aligned} x &\equiv 1 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 和 \begin{aligned} x &\equiv 4 \pmod{3} \\ x &\equiv 0 \pmod{4} \end{aligned} 分别求出它们的唯一解 $x_1$ 和 $x_2$,然后使用扩展欧几里得算法求出一个特解 $x_0$ 和 $M$,满足 $x_0 \equiv x_1 \pmod{3 \cdot 4}$,$x_0 \equiv x_2 \pmod{3 \cdot 4}$,$M = lcm(3, 4)$。最后,我们可以得到方程组的通解: $$ x \equiv x_0 + kM \pmod{3 \cdot 4} $$ 其中 $k$ 是任意整数。我们只需要枚举 $k$,检查 $x$ 是否符合条件即可。时间复杂度为 $O(\log N)$。 综上所述,他们共同爱好的书的数量为 $\lfloor \frac{N-x_0}{M} \rfloor$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值