Jury Compromise
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 19548 | Accepted: 4886 | Special Judge |
Description
In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury.
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution.
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties.
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution.
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties.
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.
Input
The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members.
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next.
The file ends with a round that has n = m = 0.
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next.
The file ends with a round that has n = m = 0.
Output
For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.).
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number.
Output an empty line after each test case.
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number.
Output an empty line after each test case.
Sample Input
4 2 1 2 2 3 4 1 6 2 0 0
Sample Output
Jury #1 Best jury has value 6 for prosecution and value 4 for defence: 2 3
Hint
If your solution is based on an inefficient algorithm, it may not execute in the allotted time.
Source
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXN 201
#define MAXSUB 401
int n, m;
int p[MAXN], d[MAXN];
int f[21][2 * MAXSUB], pre[MAXN][21][2 * MAXSUB];
int imin(int a, int b){
return a < b ? a : b;
}
int imax(int a, int b){
return a > b ? a : b;
}
int main(){
int i, j, k, t, cas = 0;
int low, high;
while(scanf("%d%d", &n, &m), n != 0 && m != 0){
low = high = 0;
for (i = 1; i <= n; i++){
scanf("%d%d", &p[i], &d[i]);
if (p[i] > d[i]) high += p[i] - d[i];
else low += p[i] - d[i];
}
memset(f, 0xff, sizeof(f));
memset(pre[0], 0xff, sizeof(pre[0]));
f[0][0 + MAXSUB] = 0;
low = imax(-20 * m, low);
high = imin(20 * m, high);
for (i = 1; i <= n; i++){
// printf("i = %d\n", i);
t = p[i] - d[i];
for (j = m; j >= 1; j--){
for (k = high; k >= low; k--){
pre[i][j][k + MAXSUB] = pre[i - 1][j][k + MAXSUB];
if (k - t < low || f[j - 1][k - t + MAXSUB] < 0) continue;
if (f[j][k + MAXSUB] < 0 || f[j][k + MAXSUB] < f[j - 1][k - t + MAXSUB] + p[i] + d[i]){
f[j][k + MAXSUB] = f[j - 1][k - t + MAXSUB] + p[i] + d[i];
pre[i][j][k + MAXSUB] = i;
}
// printf("f[%d][%d] = %d\n", j, k, f[j][k + MAXSUB]);
}
}
}
k = -MAXSUB;
for (i = low; i <= high; i++){
if (-i < k && k < i) break;
if (-i == k && f[m][i + MAXSUB] <= f[m][k + MAXSUB]) break;
if (f[m][i + MAXSUB] >= 0) k = i;
}
// printf("%d, %d\n", k, f[m][k + MAXSUB]);
t = n;
for (i = m; i >= 1; i--){
f[0][i] = pre[t][i][k + MAXSUB];
k = k - (p[f[0][i]] - d[f[0][i]]);
t = f[0][i] - 1;
}
for (i = 1, low = high = 0; i <= m; i++){
low += p[f[0][i]];
high += d[f[0][i]];
}
printf("Jury #%d\nBest jury has value %d for prosecution and value %d for defence:\n", ++cas, low, high);
for (i = 1; i <= m; i++) printf(" %d", f[0][i]);
printf("\n\n");
}
return 0;
}
/*
多限制背包
要求记录路径,一般写背包时会把最外层内存省掉,但记录路径时则不能
例如:朴素的
f[i][v] = f[i - 1][v - w[i]] + v[i]
pre[i][v] = i
省略i那维
f[v] = f[v - w[i]] + v[i]
pre[v] = i
f[v + w[j]] = f[v] + v[j]
pre[v + w[j]] = j
同时v又被j更新了
f[v] = f[v - w[j]] + v[j]
pre[v] = j
看到pre[v]被更改了,不是我们想要的了
所以每层间的pre不能共用,要分开记录
f[v] = f[v - w[i]] + v[i]
pre[i][v] = i
上述容易MLE...注意,实际上只选m个人,所有差最大20*m,
用这个做限制,而不是所有人的差
--------------------------
看了些代码,另一种做法,许多人交换m和n的循环顺序,但这样会有重,于是更新前手动判重,看这点在路径中有没出现过...
*/