Example017
原文链接:Example017
题目
已知一个整数序列 A=(a0, a1, ..., a(n-1))
,其中 0<=a(i)<n
(0<=i<n
)。若存在 a(p1)=a(p2)=...=a(pm)=x
且 m>n/2
(0<=p(k)<n
,1<=k<=m
),则称 x
为 A
的主元素。例如,A=(0, 5, 5, 3, 5, 7, 5, 5)
,则 5
为主元素;又如,A=(0, 5, 5, 3, 5, 1, 5, 7)
,则 A
中没有主元素。假设 A
中的 n
个元素保存在一个一维数组中,请设计一个尽可能高效的算法,找出 A
的主元素。若存在主元素,则输出该元素;否则输出 -1
。
注:题目中的
a()
括号内的都表示下标。
分析
本题考查的知识点:
- 顺序表
本题解法还是挺多的,但如果要考虑时间复杂度,那么就比较难了。不过作为考研题目,首先是要做出来,其次再考虑更加高效优化的解法。各解法思路如下:
- 第一种解法:双层
for
循环,统计每个数的出现次数,然后与n/2
进行比较,然后找出那个数。时间复杂度为O(n^2)
。 - 第二种解法:先对数组中所有元素进行排序,那么主元素一定是连续相邻的。我们可以设定两根指针
i
和j
,其中i
指向元素第一次出现的下标,而j
指向元素最后一次出现的下标加 1 的位置,那么j-i
就是该元素在数组中的出现次数,就可以与n/2
相比较,然后找出主元素。该解法的效率其实也不高,而且如果使用的排序算法时间复杂度比较高(如下面冒泡排序算法的时间复杂度是O(n^2)
)那么效果不会比解法一更优。 - 第二种解法的优化:先对数组中所有元素进行排序。如果存在主元素那么主元素一定是数组的中间元素(因为主元素的个数是大于
n/2
);但可能存在没有主元素的情况,所以需要再循环一次判断数组的中间元素是否真的是主元素。 - 第三种解法:从前向后扫描数组元素,标记出一个可能成为主元素的元素
num
,然后重新计数,确认num
是否是主元素。算法步骤如下:第一步,选取候选的主元素,依次扫描所给数组中的每个整数,将第一个遇到的整数num
保存到变量c
中,记录num
的出现次数为 1;若遇到的下一个整数仍等于num
,则计数加 1,否则计数减 1;当计数减到 0 时,将遇到的下一个整数保存到c
中,计数重新标记为 1,开始新一轮计数,即从当前位置开始重复上述过程,直到扫描完全部数组元素。第二步,判断c
表示的元素是否是真正的主元素,再次扫描该数组,统计c
中元素出现的次数,若大于n/2
则为主元素;否则,数组中不存在主元素。
图解
略。
C实现
解法一核心代码:
/**
* 寻找顺序表中的主元素
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果没有找到则返回 -1
*/
int findMainEle(int A[], int n) {
for (int i = 0; i < n; i++) {
// 计数器,记录 A[i] 在数组 A 中的出现次数
int count = 0;
// 统计 A[i] 在数组 A 中的出现次数
for (int j = 0; j < n; j++) {
if (A[i] == A[j]) {
count++;
}
}
// 判断 A[i] 是否是主元素
if (count > n / 2) {
// 如果是主元素则返回
return A[i];
}
}
// 不存在主元素则返回 -1
return -1;
}
解法二核心代码:
// 同下面的Java代码一致
解法二优化核心代码:
// 同下面的Java代码一致
解法三核心代码:
// 同下面的Java代码一致
完整代码:
#include <stdio.h>
/**
* 寻找顺序表中的主元素
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果没有找到则返回 -1
*/
int findMainEle(int A[], int n) {
// 先对数组进行排序,这里采用冒泡排序的方式(它的时间复杂度是 O(n^2)),可以选择更优性能的排序算法
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (A[j] > A[j + 1]) {
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
}
int mid = A[n / 2];// 获取数组的中间元素
// 由于可能存在没有主元素的情况,所以要判断数组的中间元素是否真的是主元素
int count = 0;// 计数器,记录中间元素的出现次数
for (int i = 0; i < n; i++) {
if (mid == A[i]) {
count++;
}
}
// 判断中间元素是否是主元素
if (count > n / 2) {
return mid;
} else {
return -1;
}
}
/**
* 打印数组
* @param arr 待打印的数组
* @param n 数组长度
*/
void print(int arr[], int n) {
printf("[");
for (int i = 0; i < n; i++) {
printf("%d", arr[i]);
if (i != n - 1) {
printf(", ");
}
}
printf("]\n");
}
int main() {
// 存在主元素的数组
int A[] = {0, 5, 5, 3, 5, 7, 5, 5};
int an = 8;
print(A, an);// 打印数组
int aEle = findMainEle(A, an);// 调用函数,寻找主元素
if (aEle != -1) {// 打印结果
printf("主元素:%d", aEle);
} else {
printf("不存在主元素!");
}
printf("\n");
// 不存在主元素的数组
int B[] = {0, 5, 5, 3, 5, 1, 5, 7};
int bn = 8;
print(B, bn);// 打印数组
int bEle = findMainEle(B, bn);// 调用函数,寻找主元素
if (bEle != -1) {// 打印结果
printf("主元素:%d", aEle);
} else {
printf("不存在主元素!");
}
}
执行结果:
[0, 5, 5, 3, 5, 7, 5, 5]
主元素:5
[0, 5, 5, 3, 5, 1, 5, 7]
不存在主元素!
Java实现
解法一核心代码:
/**
* 寻找顺序表中的主元素
*
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果不存在主元素则返回 -1
*/
public static int findMainEle(int[] A, int n) {
// 双层 for 循环
for (int i = 0; i < n; i++) {
// 计数器,记录 A[i] 在数组中的出现次数
int count = 0;
// 统计 A[i] 在数组 A 中的出出现次数
for (int j = 0; j < n; j++) {
if (A[i] == A[j]) {
count++;
}
}
// 判断 count 是否是主元素
if (count > n / 2) {
// 如果是主元素则返回
return A[i];
}
}
// 如果不存在主元素则返回 -1
return -1;
}
解法二核心代码:
/**
* 寻找顺序表中的主元素
*
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果不存在主元素则返回 -1
*/
public static int findMainEle(int[] A, int n) {
// 先对数组进行排序,这里采用冒泡排序的方式
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (A[j] > A[j + 1]) {
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
}
// 声明两根指针 i 和 j,来统计每个数的出现次数
int i = 0;// 记录一个元素的起始下标
int j = 0;// 记录一个元素的结束下标之后的元素的下标
while (j < n) {
// 如果相等则指针 j 继续前进
if (A[j] == A[i]) {
j++;
} else {
// 一旦不等的情况发生,那么 j-i 就是 A[i] 这个元素在数组中的出现次数,那么判断它是否是主元素
if (j - i > n / 2) {
return A[i];
}
// 如果不是主元素,则需要继续判断,所以得更新 i 指针为现 j 指针的位置,作为新元素的起始下标
i = j;
}
}
// 注意可能有 [1, 2, 3, 3, 3] 这样的情况,即主元素在数组的最后,所以特殊处理
if (j == n) {
if (j - i > n / 2) {
return A[i];
}
}
return -1;
}
解法二优化核心代码:
/**
* 寻找顺序表中的主元素
*
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果不存在主元素则返回 -1
*/
public static int findMainEle(int[] A, int n) {
// 先对数组进行排序,这里采用冒泡排序的方式(它的时间复杂度是 O(n^2)),可以选择更优性能的排序算法
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (A[j] > A[j + 1]) {
int temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;
}
}
}
int mid = A[n / 2];// 获取数组的中间元素
// 由于可能存在没有主元素的情况,所以要判断数组的中间元素是否真的是主元素
int count = 0;// 计数器,记录中间元素的出现次数
for (int i = 0; i < n; i++) {
if (mid == A[i]) {
count++;
}
}
// 判断中间元素是否是主元素
if (count > n / 2) {
return mid;
} else {
return -1;
}
}
解法三核心代码:
/**
* 寻找顺序表中的主元素
*
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果不存在主元素则返回 -1
*/
public static int findMainEle(int[] A, int n) {
int count = 1;// 用来计数
int temp = A[0];// 用来保存候选主元素,初始时第一个元素就是主元素
// 循环数组查找主元素
for (int i = 1; i < n; i++) {
if (A[i] == temp) {
count++;// 对数组 A 中的候选主元素进行计数
} else {
count--;// 处理不是候选主元素的情况
if (count == 0) {// 更换候选主元素,重新计数
count = 1;
temp = A[i];
}
}
}
// 统计候选主元素的实际出现次数,判断是否真的是主元素
int c = 0;// 记录候选主元素 temp 的实际出现次数
for (int i = 0; i < n; i++) {
if (A[i] == temp) {
c++;
}
}
return c > n / 2 ? temp : -1;
}
完整代码:
public class Test {
public static void main(String[] args) {
// 存在主元素的数组
int[] A = new int[]{0, 5, 5, 3, 5, /*7,*/ 5, 5};
int an = A.length;
System.out.println(Arrays.toString(A));// 打印数组
int aEle = findMainEle(A, an);// 调用函数,寻找主元素
if (aEle != -1) {// 打印结果
System.out.println("主元素:" + aEle);
} else {
System.out.println("不存在主元素!");
}
System.out.println();
// 不存在主元素的数组
int[] B = new int[]{0, 5, 5, 3, 5, 1, 5, 7};
int bn = B.length;
System.out.println(Arrays.toString(B));// 打印数组
int bEle = findMainEle(B, bn);// 调用函数,寻找主元素
if (bEle != -1) {// 打印结果
System.out.println("主元素:" + aEle);
} else {
System.out.println("不存在主元素!");
}
}
/**
* 寻找顺序表中的主元素
*
* @param A 数组
* @param n 数组长度
* @return 如果找到主元素则返回;如果不存在主元素则返回 -1
*/
public static int findMainEle(int[] A, int n) {
int count = 1;// 用来计数
int temp = A[0];// 用来保存候选主元素,初始时第一个元素就是主元素
// 循环数组查找主元素
for (int i = 1; i < n; i++) {
if (A[i] == temp) {
count++;// 对数组 A 中的候选主元素进行计数
} else {
count--;// 处理不是候选主元素的情况
if (count == 0) {// 更换候选主元素,重新计数
count = 1;
temp = A[i];
}
}
}
// 统计候选主元素的实际出现次数,判断是否真的是主元素
int c = 0;// 记录候选主元素 temp 的实际出现次数
for (int i = 0; i < n; i++) {
if (A[i] == temp) {
c++;
}
}
return c > n / 2 ? temp : -1;
}
}
执行结果:
[0, 5, 5, 3, 5, 5, 5]
主元素:5
[0, 5, 5, 3, 5, 1, 5, 7]
不存在主元素!