二叉树中递归的思想,在这本Leetbook中讲的很细了,这里不展开。下面是几道例题:
226. 翻转二叉树(剑指 Offer 27. 二叉树的镜像)
递归法前序遍历:
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return
root.left, root.right = root.right, root.left
self.invertTree(root.left)
self.invertTree(root.right)
return root
迭代法前序遍历:
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return root
stack = []
stack.append(root)
while stack:
node = stack.pop()
if node:
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
stack.append(node)
stack.append(None)
else:
node = stack.pop()
node.left, node.right = node.right, node.left
return root
递归法中序遍历(伪):
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return
self.invertTree(root.left)
root.left, root.right = root.right, root.left
self.invertTree(root.left)
return root
迭代法中序遍历:
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return root
stack = []
stack.append(root)
while stack:
node = stack.pop()
if node:
if node.right:
stack.append(node.right)
stack.append(node)
stack.append(None)
if node.left:
stack.append(node.left)
else:
node = stack.pop()
node.left, node.right = node.right, node.left
return root
递归法后序遍历:
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return
left = self.invertTree(root.left)
right = self.invertTree(root.right)
root.left, root.right = right, left
return root
迭代法后序遍历:
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return root
stack = []
stack.append(root)
while stack:
node = stack.pop()
if node:
stack.append(node)
stack.append(None)
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
else:
node = stack.pop()
node.left, node.right = node.right, node.left
return root
在遍历的过程中,把记录节点值这个操作改成交换左右子节点即可,前中后序遍历都是可以的,递归法和迭代法都行。唯一要注意的就是中序遍历,用递归法是左根左,因为使用递归的中序遍历,某些节点的左右孩子会翻转两次。甚至,层序遍历也是可以的,可以看我的这篇文章。
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if (not p) and (not q):
return True
elif (not p) or (not q):
return False
elif p.val != q.val:
return False
else:
return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)
判断两个二叉树是否相同,思路如下:两个二叉树是否同时为空?是否一个为空而另一个不为空?他们的根节点值是否相同?最后是递归的判断,他们的左右子树是否都相同?
101. 对称二叉树(剑指 Offer 28. 对称的二叉树)
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
return self.check(root, root)
def check(self, p: TreeNode, q: TreeNode) -> bool:
if (not p) and (not q):
return True
elif (not p) or (not q):
return False
elif p.val != q.val:
return False
else:
return self.check(p.left, q.right) and self.check(p.right, q.left)
判断一个二叉树是否为对称二叉树,可以转化为判断这个树和自己的镜像树是否相同。关键在于用 self.check(root, root)
构造出两个树,然后以相反方向进行递归和判断。
迭代写法的话使用的是队列,用栈或者数组等其他的容器都行,关键是把节点放入容器的顺序不能错,然后每次取两个左右对应位置的节点出来做比较,如下:
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
if not root:
return True
queue = collections.deque()
queue.append(root.left)
queue.append(root.right)
while queue:
leftNode = queue.popleft()
rightNode = queue.popleft()
if (not leftNode) and (not rightNode):
continue
elif (not leftNode) or (not rightNode):
return False
elif leftNode.val != rightNode.val:
return False
else:
queue.append(leftNode.left)
queue.append(rightNode.right)
queue.append(leftNode.right)
queue.append(rightNode.left)
return True
class Solution:
def mergeTrees(self, root1: TreeNode, root2: TreeNode) -> TreeNode:
if not root1 and not root2:
return None
if not root1:
return root2
if not root2:
return root1
new_root = TreeNode(root1.val + root2.val) # 新建节点
new_root.left = self.mergeTrees(root1.left, root2.left)
new_root.right = self.mergeTrees(root1.right, root2.right)
return new_root
两个二叉树一起从根节点开始向下递归,如果其中一个二叉树的节点为空,则合并后的节点就是另一个二叉树的节点。合并后的二叉树每次都要新建节点,然后左右子树用递归得到。优化的写法是不新建节点,直接用其中一个二叉树的节点,只需要把另一个二叉树的节点值加过去即可。
class Solution:
def mergeTrees(self, root1: TreeNode, root2: TreeNode) -> TreeNode:
if not root1 and not root2:
return None
if not root1:
return root2
if not root2:
return root1
root1.val += root2.val # 用旧节点
root1.left = self.mergeTrees(root1.left, root2.left)
root1.right = self.mergeTrees(root1.right, root2.right)
return root1
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
left_depth = self.maxDepth(root.left)
right_depth = self.maxDepth(root.right)
return max(left_depth, right_depth) + 1
自底向上的递归,在Leetbook中有详细介绍,简单来说:如果我们知道一个根节点,以其左子节点为根的最大深度为 left_depth 和以其右子节点为根的最大深度为 right_depth ,我们就可以选择它们之间的最大值,再加上1来获得根节点所在的子树的最大深度。
class Solution:
def diameterOfBinaryTree(self, root: TreeNode) -> int:
self.ans = 1
def depth(node: TreeNode):
if not node:
return 0
left_depth = depth(node.left)
right_depth = depth(node.right)
# 此节点作为根节点的最大深度是否为众节点中最大,是则更新ans
self.ans = max(self.ans, left_depth + right_depth + 1)
return max(left_depth, right_depth) + 1
depth(root)
return self.ans - 1
虽然题目说明了直径(最大的两节点间路径)不一定经过根节点,但是归根到底,两节点间路径必然会有个根节点,目标就是找到把树中所有节点都作为根节点时,各自求出最大深度(上一题思路),然后在这些最大深度中找到最大的作为直径 ans。
class Solution:
def findTilt(self, root: TreeNode) -> int:
self.ans = 0
def val_sum(node: TreeNode):
if not node:
return 0
left_sum = val_sum(node.left)
right_sum = val_sum(node.right)
tilt = abs(left_sum - right_sum)
self.ans += tilt
return left_sum + right_sum + node.val
val_sum(root)
return self.ans
本题与最大深度类似,区别在于是记录深度之差的绝对值(坡度),然后递归返回左右子树和自身值之和。
class Solution:
def hasPathSum(self, root: TreeNode, targetSum: int) -> bool:
if not root: # 非节点
return False
if not root.left and not root.right: # 叶子节点
return targetSum == root.val
return self.hasPathSum(root.left, targetSum - root.val) or self.hasPathSum(root.right, targetSum - root.val)
思路是如果子树的和等于 targetSum 减去当前节点的值,则存在路径。所以终止条件为非节点则返回 False,为叶子节点则返回 targetSum == 当前节点的值,函数调用是子节点和减去当前节点值后的 targetSum 。
113. 路径总和 II(剑指 Offer 34. 二叉树中和为某一值的路径)
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
ans = []
path = []
def dfs(root: TreeNode, targetSum: int):
if not root:
return
path.append(root.val)
targetSum -= root.val
if not root.left and not root.right and targetSum == 0:
ans.append(path.copy())
dfs(root.left, targetSum)
dfs(root.right, targetSum)
path.pop()
dfs(root, targetSum)
return ans
这题不是求有没有路径,而是要把路径都找出来,答案放在列表 ans 里。同样还是递归地深度遍历,用一个 path 列表记录路径,如果是叶节点且和数符合条件,就往 ans 里面加入路径 path,否则就遍历左子树和右子树,记得递归的最后要把 path 进行弹出,然后注意往 ans 里面加入的是 path 的浅拷贝,可以写成 path.copy() 或者 path[:]
class Solution:
def countNodes(self, root: TreeNode) -> int:
if not root:
return 0
left = root.left
right = root.right
# 深度初始化为 0,是因为位运算中 2 << 0 == 2,2 << 1 == 4
leftHeight = 0
rightHeight = 0
# 求左子树深度
while left:
left = left.left
leftHeight += 1
# 求右子树深度
while right:
right = right.right
rightHeight += 1
# 若为满二叉树,则节点数为 2 的 leftHeight 次方,用位运算求
if leftHeight == rightHeight:
return (2 << leftHeight) - 1
return self.countNodes(root.left) + self.countNodes(root.right) + 1
这题用常规的前中后序遍历或者层序遍历都能做,但是这样就没利用到完全二叉树的性质了。完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。
对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。
对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。
优化点就是用位运算代替指数运算。
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
def dfs(root: 'TreeNode', p: 'TreeNode', q: 'TreeNode'):
# 如果当前节点为空,则说明 p、q 不在 node 的子树中,不可能为公共祖先,直接返回 None
if not root:
return None
# 如果当前节点 root 等于 p 或者 q,那么 root 就是 p、q 的最近公共祖先,直接返回 root
if root == p or root == q:
return root
# 递归遍历左子树、右子树,并判断左右子树结果
node_left = dfs(root.left, p, q)
node_right = dfs(root.right, p, q)
# 如果左右子树都不为空,则说明 p、q 在当前根节点的两侧,当前根节点就是他们的最近公共祖先
if node_left and node_right:
return root
elif node_left:
return node_left:
else:
return node_right
ans = dfs(root, p, q)
return ans
简单概括,就是基于后序遍历,从下往上,在找到 p 或者 q 的时候就返回。这样当 p 和 q 在两边时,就会返回最近公共祖先;当 p 和 q 在同一条路径上时,就会返回两者中作为祖先的那个。