精致又勤奋的码农
码龄8年
关注
提问 私信
  • 博客:104,310
    104,310
    总访问量
  • 68
    原创
  • 1,731,979
    排名
  • 96
    粉丝
  • 0
    铁粉

个人简介:网络安全小白

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-04-19
博客简介:

qq_38391210的博客

查看详细资料
个人成就
  • 获得185次点赞
  • 内容获得137次评论
  • 获得908次收藏
  • 代码片获得513次分享
创作历程
  • 1篇
    2022年
  • 18篇
    2021年
  • 47篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • 网络安全论文学习
    20篇
  • 基本算法
    3篇
  • LeetCode
    25篇
  • 笔记
    2篇
  • 操作系统
    2篇
  • 基本操作
    1篇
  • 非网络安全论文学习
    2篇
  • 洛谷
    1篇
  • 剑指每日一题
    3篇
  • Apollo无人驾驶
    2篇
  • C++
    2篇
  • 异常检测
    2篇
  • 软件安装
    1篇
  • 目标检测
    1篇
兴趣领域 设置
  • 人工智能
    机器学习神经网络自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【论文学习】Adversarial Examples on Graph Data: Deep Insights into Attack and Defense论文学习

摘要类似GCN这样的图深度学习模型近几年咋一些图数据任务上取得了很好的效果。与其他的深度学习模型类似,图深度学习模型通常也会遭受到对抗攻击。但是,跟非图数据相比,图数据中的离散特征,图连接以及对于扰动的不可感知的不同定义给图对抗攻击带来了许多挑战。在这篇文章中,作者提出了攻击和防御的方法。在攻击的时候,作者发现图数据的这些离散特性可以通过引入连续梯度来解决。这个连续梯度可以反映出对图中的某一条边或者某一个特征做干扰带来的影响(注意,这里的特征也必须是离散的)。在做防御的时候,作者发现通过对抗攻击得到的图跟
原创
发布博客 2022.01.05 ·
3488 阅读 ·
5 点赞 ·
8 评论 ·
10 收藏

【论文学习】graph backdoor论文学习

摘要本文提出了GTA攻击方法,这是在GNN上的第一个后门攻击(backdoor attack)。GTA有如下几个重要的方面:1)graph-oriented:将trigger定义成一个子图,这个子图包括了两个部分,拓扑结构和结点的特征信息。2)input-tailored:对每一个图都会得到一个trigger,通过对攻击有效性(attack effectiveness)和攻击规避性(保证正常图还是被正确分类,注入了trigger的图被错误分类)都进行优化得到trigger。3)下游模型不可知:攻击者不需要
原创
发布博客 2021.08.30 ·
1600 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

图神经网络对抗攻击的综述

摘要
原创
发布博客 2021.08.25 ·
3082 阅读 ·
3 点赞 ·
0 评论 ·
19 收藏

【论文学习】TDGIA: Effective Injection Attacks on Graph Neural Networks论文学习

摘要在这篇文章中,作者研究了图上的一种攻击,GIA图注入攻击。这篇文章的攻击方法并没有修改原图的链路结构(删除或者是添加边)或者是结点属性,而是直接往图上注入(inject)对抗结点。作者提出了拓扑缺陷图注入攻击(TDGIA),首先使用拓扑缺陷边选择策略来选择和注入结点有联系的原始图上的结点。然后使用平滑特征优化方法来获取注入结点的特征。在大型数据集上的实验表明,TDGIA的表现要优于已有的攻击baseline的结果。作者拿自己的攻击方法参加了KDD-CUP2020的比赛,发现使用了TDGIA后GNN模型
原创
发布博客 2021.08.25 ·
1404 阅读 ·
1 点赞 ·
4 评论 ·
7 收藏

【论文学习】图神经网络对抗攻击顶会论文汇总(2018-2021年)

图对抗攻击在信贷领域,结合贷款人的金钱交易来评估他的信用情况,人与人的交易记录就是用图来表示。对于图来说,特征往往是离散的(例如图的结构特征,一条边要么存在,要么不存在)。对于图来说,很难定义图上的微小扰动。在图像对抗攻击领域,通常是在训练好的模型上输入扰动图片使其预测错误evasion attack,但是在图对抗攻击领域是让扰动后的图上重训练的模型性能变差,这种攻击被称为投毒攻击。图卷积网络图卷积网络被用来解决半监督结点分类问题。经典的论文(1)Adversarial Attacks on
原创
发布博客 2021.08.19 ·
6885 阅读 ·
9 点赞 ·
3 评论 ·
43 收藏

【论文学习】Heterogeneous Graph Matching Networks for Unknown Malware Detection学习

摘要恶意软件攻击已经开始渗透到很多的信息系统中。传统的基于签名的恶意检测算法只能检测到已知在库中的恶意软件,并且可以做诸如二进制混淆的规避攻击,但是基于行为的方法在很大程度上依赖于恶意的训练样本,并且会有很高的训练成本。为了解决现有技术的局限性,作者提出了MatchGNet,一种异质图匹配网络可以学习图表示和相似性度量。作者还提出了一种对于模型的系统性评估手段,可以以较小的FP值来检测恶意攻击。MatchGNet比现有的SOA算法都要好,在保证FN值为0的同时将FP值降低了50%。Introductio
原创
发布博客 2021.07.05 ·
808 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【知识点学习】元学习基础入门(基于李宏毅老师的课程)

元学习其实就是教机器learn to learn。教会机器学会学习。比如如果机器已经学会了图像识别和语音识别,之后可以很好的完成文字识别。(有点像迁移学习和预训练)但是预训练是一个模型可以被用于不同的任务,但是元学习是,不同任务还是对应于不同模型。元学习的过程是这样的,比如下面这个图,如果是传统的机器学习,输入是数据,输出是标签,学习的是输入和输出的映射函数F(Learning Algorithm)。元学习也是要学习一个函数F,但是输出是另一个f*。这里的f就是一个需要得到的网络。元学习是先定义一组
原创
发布博客 2021.05.30 ·
845 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【论文学习】(二)Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries论文学习

论文脉络Hybrid Attack:Transfer Attack(黑盒攻击的一种,白盒攻击应用于本地模型)+Optimization Attack(黑盒攻击的一种,估计梯度并且基于梯度攻击)Transfer Attack只需要对于目标模型做一次查询,但是攻击成功率低,transfer loss会比较大,尤其是对于有目标攻击的成功率更低。Transfer Attack又进一步分成两种,一种是可以获得有相同数据分布的预训练模型,就不需要再训练了;一种是替换攻击,可以获得目标模型的训练数据,但是需要对目标模
原创
发布博客 2021.05.16 ·
485 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文学习】Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries论文学习

摘要这篇文章研究的场景是针对只对目标模型有API接口,但是接触不到模型内部信息的黑盒攻击,并且对于API的每次查询都是很昂贵的。之前对于黑盒的对抗攻击包括以下两种:1)使用白盒攻击的手段来转换,寻找对抗样本。2)使用基于优化optimization的攻击。作者提出了hybrid attack,可以同时结合这两种策略,在本地模型中寻找候选的对抗样本作为...
原创
发布博客 2021.05.15 ·
919 阅读 ·
0 点赞 ·
3 评论 ·
3 收藏

【论文学习】SPARK: Spatial-aware Online Incremental AttackAgainst Visual Tracking论文学习

摘要对抗攻击在图像,音频,自然语言,patch以及像素级别的分类任务中都得到了很多的应用。但是对于视频目标追踪任务的对抗攻击研究还是比较少。这篇文章通过在线产生人眼很难感知的对抗扰动,从而使得追踪器可以产生不正确的追踪轨迹(无目标攻击UA),或者是产生特定的追踪轨迹(有目标攻击TA)。在最后的时候,作者通过适应FGSM,BIM和C&W算法从而提出了一个spatial-aware的攻击方法,并且全面的分析了这些攻击方法的表现。作者认为在线目标追踪有两个新的挑战:1)很难产生可以在连续的视频帧之间进行
原创
发布博客 2021.04.10 ·
661 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

【论文学习】Efficient Adversarial Attacks for Visual Object Tracking论文学习

摘要现有的SOA目标追踪器,例如Siamese系列追踪器算法都是使用DNN来获得高准确率。现在很多人都在研究视觉追踪模型的鲁棒性。这篇文章中分析了基于Siamese网络的目标追踪器的弱点,并且在视觉目标追踪领域生成对抗样本。这篇文章中提出了一个FAN(Fast Attack Network),从而使用漂移损失(drift loss)和嵌入特征损失(mbeddedfeature loss)来攻击Siamese追踪器。根据FAN这个名字来看,这篇文章主要是侧重于提高训练对抗样本的速度。FAN可以在10ms的时
原创
发布博客 2021.04.03 ·
587 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

【论文学习】Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises论文学习

一 摘要通过研究对抗攻击可以更好的了解神经网络,并且提高深度学习模型的鲁棒性。在这篇论文中,提出了一个cooling-shrinking攻击,可以攻击最新的SiamRPN网络。通过本文设计的对抗扰动,可以在冷却目标所在位置的热力图的同时,收缩预测的边界框,让被追踪物体无法被追踪。本文攻击模型可以在OTB100,VOT2018以及LaSOT这几个数据集上取得很好的效果。并且,本文的方法有着很好的迁移性,也可以很好的欺骗DaSiamRPN,DaSiamRPN-UpdateNet和DiMP。二 知识点补充1
原创
发布博客 2021.04.02 ·
793 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【论文学习】Robust Tracking against Adversarial Attacks论文学习

知识点补充OTB中的评价指标( 1)one-pass evaluation(OPE)这是目标追踪领域常用的评估方式,只给第一帧ground truth没有随机性的算法只跑一遍就可以。(2)precision plot追踪算法估计的目标位置(bounding box)的中心点与人工标注(ground-truth)的目标的中心点,这两者的距离小于给定阈值的视频帧的百分比。不同的阈值,得到的百分比不一样,因此可以获得一条曲线。该评估方法的缺点:无法反映目标物体大小与尺度的变化(所以用的比较少)(3
原创
发布博客 2021.03.20 ·
971 阅读 ·
2 点赞 ·
4 评论 ·
0 收藏

【leetcode】leetcode40组合总和II的解题思路和具体实现

写在前面坚持每天刷1-2道leetcode题目,保持手感,为以后找工作打基础。今天遇到了一道leetcode题目,觉得其中的一个去重的思路十分巧妙,十分值得学习,所以记录下来。题目描述给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。说明:所有数字(包括目标数)都是正整数。解集不能包含重复的组合。示例 1:输入: candidates = [10
原创
发布博客 2021.03.18 ·
169 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【操作系统】清华大学操作系统系列:虚拟内存技术

虚拟内存的基本出发点理想中的存储器是更大,更快,更便宜的非易失性存储器。硬盘的容量很大,但是速度很快,所以可不可以把硬盘的容量用上,甚至把磁带用上。把不常用的数据放在硬盘上,把常用的数据放在内存中,使得在有限的内存中放的是经常访问的数据。这样就有了一种虚拟的大内存的感觉,所以叫做虚拟内存。虚拟内存=物理内存+硬盘虚拟内存的技术(1)覆盖技术目标:是在较小的可用内存中运行较大的程序,常用于多道程序系统,与分区存储管理配合使用。基本原理:把程序按照自身的逻辑结构,划分为若干个功能上相对独立的程序模块
原创
发布博客 2021.01.20 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【操作系统】清华大学操作系统课程:(1)操作系统概述

写在前面最近想补一补操作系统的基础,所以在网上找到B站上面的清华大学操作系统课程。坚持学习这个课程,并且把视频中重要的知识点记录下来,方便后面查看。链接如下:清华大学操作系统课程传送门什么是操作系统从用户角度来说,操作系统是一个控制软件。(1)对上,可以管理上面的应用程序,并且为应用程序提供服务,使得不同的应用都可以很好的在操作系统上完成各自的工作。(2)对下,可以很好的分配CPU,内存等资源,管理外设。操作系统的层次结构位于硬件之上,应用程序之下的中间层的系统软件。操作系统是直接面向硬件的。
原创
发布博客 2021.01.14 ·
899 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【论文学习】Robust Tracking against Adversarial Attacks论文学习

摘要对抗攻击很容易对CNN网络造成影响,但是很少有人关注于对这种攻击的防御。现有的很多攻击和防御手段都是关注于单个的图片。这篇文章主要是关注于对视频序列产生对抗样本,并且针对这种对抗攻击来提高追踪的鲁棒性。一方面,本文将暂时的扰动加入到原始的视频序列中,作为对抗样本来攻击影响追踪的结果;另一方面,作者也采用防御手段来消除这种攻击的影响。作者将提出的攻击和防御手段应用在最先进的追踪算法上。实验结果表明,在benchmark的数据集上有很好的表现,防御手段不仅可以抵御攻击,还可以在追踪器没有被攻击的时候也取得
原创
发布博客 2021.01.11 ·
553 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

国科大自然语言处理(刘洋老师)期末复习

老师上课讲的重点数学基础:概率论和信息论部分,熵的计算啥的公式一定要记下来隐马尔可夫模型:是重点重点!前向概率,后向概率,Viterbi的计算,EM支持向量机:了解核函数,对偶问题,不会考察它的具体推导过程最大熵,对数线性模型:了解基本概念词法分析:加1平滑重要,哪些是曲折语,孤立语,黏着语(说是往年考过这个选择题)句法分析:线图分析法(Chart parsing),CYK是重点,依存分析中的Shift-reduce也是重点(考试会做改进,不一定会是ppt上的这种规则)语义分析:不作为重点,基
原创
发布博客 2021.01.04 ·
1666 阅读 ·
3 点赞 ·
1 评论 ·
14 收藏

国科大算法最优化期末复习

写在前面期末复习的时候,一度找不到复习资料,复习起来很焦虑,希望可以把自己复习的重点记录下来,供后面的学弟学妹们参考复习。复习重点算法最优化考试是开卷考试,并且可以带电脑,平板(不能上网)。今年前面是几个填空题,主要考察凸函数,拟凸函数,单峰函数这些的图像判断,以及通过等高线图找到梯度方向(第一个ppt上的最后一页的那个图)。填空题主要就是考察这些基本概念。第二大题给了4个题目,让判断是属于哪种规划(线性规划,凸优化等等),以及用哪种优化方法解决(单纯形法,扩展单纯形法等)。有选项可以选择,但是要说
原创
发布博客 2021.01.04 ·
2386 阅读 ·
8 点赞 ·
8 评论 ·
40 收藏

【蛇形遍历二叉树】leetcode103代码和解题思路

题目描述给定一个二叉树,返回其节点值的锯齿形层次遍历。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。例如:给定二叉树 [3,9,20,null,null,15,7],3/ 9 20/ 15 7返回锯齿形层次遍历如下:[[3],[20,9],[15,7]]通过的代码/** * Definition for a binary tree node. * struct TreeNode { * int val; * Tree
原创
发布博客 2020.12.16 ·
544 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多