【论文学习】Adversarial Examples on Graph Data: Deep Insights into Attack and Defense论文学习
摘要类似GCN这样的图深度学习模型近几年咋一些图数据任务上取得了很好的效果。与其他的深度学习模型类似,图深度学习模型通常也会遭受到对抗攻击。但是,跟非图数据相比,图数据中的离散特征,图连接以及对于扰动的不可感知的不同定义给图对抗攻击带来了许多挑战。在这篇文章中,作者提出了攻击和防御的方法。在攻击的时候,作者发现图数据的这些离散特性可以通过引入连续梯度来解决。这个连续梯度可以反映出对图中的某一条边或者某一个特征做干扰带来的影响(注意,这里的特征也必须是离散的)。在做防御的时候,作者发现通过对抗攻击得到的图跟







