深度学习入门笔记(8)—— Multilayer Perceptron 多层感知器

在这里插入图片描述
所谓多层感知器,其实就是具有一个或多个隐藏层(hidden layer)的全连接前馈神经网络,如图所示,在最重要的求取损失关于权重的偏导数的过程上,跟之前的 Logistic Regression 和 Softmax Regression 一样,仍然是使用链式法则进行求导。

在这里插入图片描述
为了将感知器、Logistic Regression 和 Adaline 看作是单层神经网络,习惯上,我们把输入层作为第 0 层,把第一个隐藏层作为第 1 层,以此类推。在符号上也是如此, a 2 ( 1 ) a_2^{(1)} a2(1) 表示第 1 层的第 2 个神经元,即第一个隐藏层的第 2 个神经元。

在这里插入图片描述
单层神经网络模型的损失函数是凸函数,而在多层神经网络模型下就不是了,凸函数会存在很多的局部极小值点,所以需要进行多次不同的权重初始化,以防止损失陷入局部极小值点。

在这里插入图片描述
Sigmoid 激活函数 + MSE 损失函数的组合虽然在形式上很好(Sigmoid 函数的导数抵消了负对数似然函数导数的分母),但是 Sigmoid 函数 σ ( z ) \sigma (z) σ(z) 当输入 z 很小时,其输出也会很小,这就造成了梯度消失的问题。

在这里插入图片描述
但是,在 MLP 中,只有隐藏层还不够,还需要加上非线性的激活函数,才能解决异或问题。Logistic Regression 是无隐藏层 + 非线性激活函数,线性 MLP 是有隐藏层 + 线性激活函数,它们都是只能产生线性决策边界的。

在这里插入图片描述
在这里插入图片描述
在非线性激活函数中,Sigmoid 和 Tanh(及其变种)都是 S 型曲线,而 Tanh 与 Sigmoid 相比,优势在于其过零点、零点附近的曲线更陡峭(梯度大)、可以同时产生正负值(避免了梯度消失)

在这里插入图片描述
在这里插入图片描述

ReLU 及其变种,当 ReLU 函数的输入小于 0 时,斜率也为 0,相当于神经元“死亡”,如果太多神经元“死亡”就会影响训练,但也可以看作是一种剪枝或者正则化方法(避免过拟合)。Leaky ReLU 的 α 是超参数,需要人为设定;而PReLU 中的 α 是通过训练得到的。

在这里插入图片描述
Smooth Adversarial Training 这篇论文中,作者比较了不同激活函数的性能与鲁棒性。

在这里插入图片描述
代码示例 1 是 Sigmoid + 均方损失,代码示例 2 是 Softmax + 交叉熵损失,后者的性能更好,可能是因为前面提到过的,Sigmoid + MSE 的组合会留下 σ ( z ) ( 1 − σ ( z ) ) \sigma (z) (1 - \sigma (z)) σ(z)(1σ(z)) ,这是两个小数的乘积,值会越来越小导致梯度消失。

在这里插入图片描述
在这里插入图片描述
虽然已经有论文证明单层神经网络可以逼近任意函数,但不代表它是可行的。使用深度学习而不是宽度学习,好处是能用更少的神经元(参数)得到相同的学习能力,而后面的层受到前面层的限制,也可以避免过拟合,但是层数多会造成梯度消失和梯度爆炸的问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多层感知器Multilayer Perceptron,MLP)是一种常用的神经网络模型,可以用来解决分类和回归问题。它由输入层、隐藏层和输出层组成,每一层都由多个神经元组成,相邻层之间的神经元之间有连接权重。 使用Python实现多层感知器模型的方法如下: 1. 导入所需的库:首先需要导入NumPy库用于数值计算,以及scikit-learn库用于数据预处理。 ```python import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split ``` 2. 准备数据:将原始数据集划分为训练集和测试集,并进行特征缩放。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ``` 3. 初始化权重和偏置:定义一个随机初始化权重和偏置的函数。 ```python def initialize_parameters(layer_dims): parameters = {} for l in range(1, len(layer_dims)): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters parameters = initialize_parameters(layer_dims) ``` 4. 前向传播:定义前向传播函数,计算神经网络的输出。 ```python def forward_propagation(X, parameters): A = X caches = [] for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = relu(Z) cache = (Z, A) caches.append(cache) ZL = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = sigmoid(ZL) return AL, caches AL, caches = forward_propagation(X_train, parameters) ``` 5. 计算损失:根据神经网络的输出和真实标签计算损失函数。 ```python def compute_cost(AL, Y): m = Y.shape[1] cost = (-1/m) * np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1-Y, np.log(1-AL))) return cost cost = compute_cost(AL, y_train) ``` 6. 反向传播:定义反向传播函数,计算梯度并更新参数。 ```python def backward_propagation(AL, Y, caches): grads = {} dZL = AL - Y dW = (1/m) * np.dot(dZL, A_prev.T) db = (1/m) * np.sum(dZL, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) grads['dW'] = dW grads['db'] = db return grads grads = backward_propagation(AL, y_train, caches) ``` 7. 参数更新:根据梯度和学习率更新参数。 ```python def update_parameters(parameters, grads, learning_rate): for l in range(1, L): parameters['W' + str(l)] -= learning_rate * grads['dW' + str(l)] parameters['b' + str(l)] -= learning_rate * grads['db' + str(l)] return parameters parameters = update_parameters(parameters, grads, learning_rate) ``` 8. 模型训练:将上述步骤整合到一个函数中,循环迭代多次进行模型训练。 ```python def model(X, Y, learning_rate, num_iterations): parameters = initialize_parameters(layer_dims) for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) return parameters parameters = model(X_train, y_train, learning_rate, num_iterations) ``` 以上就是使用Python实现多层感知器(MLP)模型的主要步骤。根据具体数据集和问题,可能需要进行参数调优和模型评估等进一步步骤。在实际应用中,还可以使用其他性能更好的库(如TensorFlow、Keras)来实现多层感知器模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值