诚信是很重要的

 记得以前乘飞机都会去买保险,自从那次飞大连的飞机掉了下来,传言说某个人买了7份保险,之后又说是那个人把飞机给点着了,因此才发生了惨重事故,因此不给赔偿,之后我乘飞机就不再购买保险了,感觉我在购买保险的时候信任了保险公司,但是除了事故之后保险公司就很难给我信任了,或许是无法给我信任了。

 

这次的奶粉事件,三鹿真的很无耻,就如同BBS中调侃的内容“别人是往奶粉里加三聚氰胺的,可是你却是奢侈到往三聚氰胺里加奶粉”。这次奶粉事件,肯定会重创国内的牛奶业,一个企业的无耻创收,却带来了如此大的冲击,可见诚信有多重要,国人都不信任奶制品了,要不商务部长为何要去超市试喝酸奶,同时且问一小瓶的三聚氰胺能否药倒一个人,也就是说商务部长试喝奶粉能否建立起人民的信心?我看很难,这个信心要经历很长久的时间的消磨才会因为淡忘而重新建立起来。

 

最后说软件业,软件公司总是为了增大自身的收入,提高对用户的报价,并且通过各种关系对用户施压,就如同我遇到的一个项目,我报价16.8万的开发费用,可是竞争者报价80万,并且用那家公司的上级领导来施压,且问,投入80万的软件,何时才会从各个方面为企业带来足够的回报?此公司的老板说我坏软件业的规则(报价太低),可是以我的评估,16.8万的报价中,首个用户我可以有20%的纯利,推广开来,利润还是不少的,因此我没有开打低价战争。反之,我认为那家公司违背了规则,因为他给用户带来了对软件公司的不信任,众多的用户说,信息化确实是很高深莫测,但是我们没有技术力量去消化它,因此我可以选择不做。其实导致众多的这种感觉,基本行还是因为多数的企业信息化投入,无法带来回报,也就是对信息化的信任缺失。

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值