自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 Redisearch魔法:轻松实现K近邻查询

K近邻(K-Nearest Neighbors,简称KNN)查询是一种机器学习方法,它可以用于分类、回归和推荐等任务。在K近邻查询中,我们根据数据点之间的距离(如欧几里得距离或余弦相似度)来确定它们之间的相似性。KNN算法的基本思想是:对于待分类的数据点,找到距离它最近的K个训练样本点,根据这K个邻居的信息来预测待分类点的属性。Redisearch是Redis的一个模块,它提供了全文搜索、索引和聚合功能。

2023-06-15 20:12:35 632 2

原创 从FM推演各深度CTR预估模型(附代码)

另一方面,对深度学习的经典、前沿方法的熟悉也很重要。在电商的场景下,用户的决策过程很可能是这样的,在观察到系统展现的推荐商品列表后,点击自己感兴趣的商品,进而产生购买行为。广告也是一样的场景,在很多电商的平台上会有很多不同场景的广告位,每个场景蕴含了用户的不同兴趣的表达,这些信息的汇总与融合可以带来最后效果的提升。此处对应简化版的FM视角是将拼接好的稠密向量作为输入向量,且不做领域方面的区分(但产生这些稠密向量的过程是考虑领域信息的,相对全特征维度的全连接层减少了大量参数,可以视作稀疏链接思想的体现)。

2023-06-14 16:18:57 774

原创 一文梳理广告CTR预估算法和架构体系

在3.0阶段,深度学习神经网络相比浅层模型的巨大优势是在于宽深的网络结构,理论上深度学习能带来非常高阶的特征交叉,但是由于神经网络的训练存在局部最优的问题,仅仅依赖隐式的特征交叉往往不能带来最完美的效果,显示+隐式的交叉行为可以为CTR预估带来更好的效果。如何更快地捕获用户的数据分布?在排序模型中,我们往往在特征层面实现了不同的用户、商品有不同的输入信息,但我们的模型参数是同一套,如果能在模型层面给予个性化的参数结构,就能给CTR模型带来更大的表征能力,PPNet、APG是比较典型的个性化参数建模思路。

2023-06-14 16:18:53 2137

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除