Everything should be made as simple as possible, but no simpler

排序:
默认
按更新时间
按访问量

实现一个非确定性下推自动机(DPDA - Deterministic PushDown Automaton)

一个非确定下推自动机,是一个在有限状态机的基础上,辅之以一个栈数据结构作为外部存储,而非确定性来自于DPDA每一步计算后,其机器配置的不确定性。一个应用DPDA的典型例子是确定一个字符串是否是回文字符串,类似于aba, abba, babbaabbab等。下面我们就使用Python语言来一步步来实...

2018-05-07 19:58:35

阅读数:151

评论数:0

uWSGI Preforking对比lazy-apps 和lazy

这是uWSGI项目有争议的选项之一。默认情况下,uWSGI会在第一个启动的进程中加载整个应用,并在加载完毕之后,会将自己多次fork()。这是常见的Unix模式,这能够显著降低应用的内存使用量,允许使用一些有趣的技巧,同时对于某些语言来说,这也会给你带来一些令人头疼的问题。虽然它的名字,uWSGI...

2018-03-19 14:17:34

阅读数:135

评论数:0

映射类型(mapping type)从Elasticsearch中移除

原文:https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html 注意:在Elasticsearch6.0.0或者或者更新版本中创建的索引只会包含一个映射类型(mappingt...

2018-02-01 00:38:02

阅读数:1221

评论数:0

【备忘】:fetch API获取返回值的方式

使用fetch API来做后端请求,相比较传统的Ajax方式,在写出的代码上更加容易理解,也更便于别人看懂。但是在使用的过程中,经常有同学不能顺利从传统的Ajax请求(如果使用jquery的话,就是$.ajax,$.post,$.get)转移到新的fetch方式,很多时候就是卡在了获取响应数据的环...

2017-06-30 21:32:58

阅读数:4851

评论数:0

Nginx允许跨域访问的配置问题

如今前后端分离的模式,越来越成为很多团队的选择,通过分离前后端的工作,是的双方更能关注于自己核心的工作领域,只需要通过相应的API接口进行交互。 前后端工作的分离带来的一个问题就是前后端在部署上分离的可能性,在部署上的分离又会触发浏览器安全机制——同源策略,从而导致不能访问非同域的资源。...

2017-06-23 16:01:13

阅读数:15949

评论数:0

Python:从subprocess运行的子进程中实时获取输出

有些时候,我们需要将某些程序放到子进程中去运行,以达到整合系统的目的。在Python中,一个非常好的选择就是使用subprocess模块,本模块为开辟子进程去执行子程序提供了统一的接口,更加便于学习和使用。 同时,对于在子进程里的程序,我们希望能够实时获取其输出,以在主进程中打印相关信息...

2017-06-23 12:25:14

阅读数:10314

评论数:2

通过Python3.5来学习几种不同的IO模型

计算机的核心资源,基本上就是CPU和内存。我们下面的讨论可以假定CPU只有一个物理核心。 从目前的情况看,CPU很快,IO很慢,即使是物理内存也很慢,否则就不需要CPU设置多层的高速cache了。 CPU主要快在哪里?1、频率;2、指令执行效率,这里主要是硬件级别的指令分阶段并行优化。 ...

2016-11-28 23:04:08

阅读数:1089

评论数:0

Python小技巧 4:利用字典的默认行为

典型代码1: from collections import defaultdict if __name__ == '__main__': data = defaultdict(int) data[0] += 1 print(data) 输出1: defaultdict(, {0:...

2016-11-06 00:01:17

阅读数:1787

评论数:0

Python小技巧 3:列表项的排序

典型代码1: data_list = [6, 9, 1, 3, 0, 10, 100, -100] data_list.sort() print(data_list) 输出1: [-100, 0, 1, 3, 6, 9, 10, 100] 典型代码2: data_list = [6, 9, 1, ...

2016-10-24 13:53:18

阅读数:2464

评论数:0

Python小技巧 2:列表项的推导式和过滤操作

典型代码1: data_list = [1, 2, 3, 4, 0, -1, -2, 6, 8, -9] data_list_copy = [item for item in data_list] print(data_list) print(data_list_copy) 输出1: [1, 2...

2016-10-19 17:55:28

阅读数:1077

评论数:0

Python小技巧 1:列表项的拼接

典型代码: data_list = ['a', 'b', 'c', 'd', 'e', 'f'] separator = '\t' data_joined = separator.join(data_list) print(data_joined) 其输出为: a b c d e f 应用场景...

2016-10-15 10:26:05

阅读数:2333

评论数:0

使用Python接入银联支付和支付宝支付的实现

前置条件:需要安装Python的OpenSSL模块,我使用的版本是16.1.0,可以使用pip install pyopenssl来安装 一、支付宝支付 1. 使用RSA公钥加密系统进行签名和签名验证,需要自己生成一个RSA私钥和对应的一个RSA公钥(在Linux下可以使用ssh-keygen命令...

2016-09-26 13:46:42

阅读数:5322

评论数:0

Maven POM中的各种scope的行为总结

compile:默认的scope。任何定义在compile scope下的依赖将会在所有的class paths下可用。maven工程会将其打包到最终的artifact中。如果你构建一个WAR类型的artifact,那么在compile scope下引用的JAR文件将会被集成到WAR文件内。pro...

2016-08-16 15:19:35

阅读数:11211

评论数:5

docker基础概念总结

为了简化部署流程,调研了Docker容器技术,总结如下。

2016-04-29 12:14:54

阅读数:1396

评论数:0

Hadoop备忘:Reduce阶段Iterable<VALUEIN> values中的每个值都共享一个对象

/** * Iterate through the values for the current key, reusing the same value * object, which is stored in the context. * @return the series...

2016-03-31 16:11:22

阅读数:2408

评论数:0

数据分析遐想

目标 数据分析,其总体目标就是对各种系统产生的数据进行有意识地加工,以观察加工之后的数据是否能解释某些问题,或者能发现某些明显的模式。 对于前者,一般是问题驱动,比如产品的销售量突然出现了大幅度的下降,这个问题就驱使产品的销售去分析造成这种大幅波动的原因,这时他可以去市场上收集竞争对手...

2016-03-25 23:50:14

阅读数:996

评论数:0

利用virtualenv在Hadoop Streaming中使用完全个性化的Python解释器

在使用Python编写Hadoop Streaming作业的过程中,我们发现需要使用一些比较复杂的第三方库,比如numpy,scipy,scikit-learn,pandas等等。而这些库通过简单的zipimport机制又不能正常在工作节点上执行,主要原因是这些库中,有些是有C共享库依赖的。 ...

2016-03-01 14:24:08

阅读数:2791

评论数:1

第三方数据分析公司的发展方向

从目前的第三方数据分析市场格局来看,第三方的数据分析公司的盈利并不在于数据分析工具(也可以称为统计系统)自身,更多是数据分析报告、对于一些业务相关的数据追踪(也有的叫做归因)服务上、还有一些个个性化的数据服务,比如用户给出数据后让这些第三方公司给出解决方案(如推荐系统)等等。 对于市场形成这样...

2015-11-21 18:46:05

阅读数:3149

评论数:0

备忘:Ngnix配置下载目录并限制并发数量与下载带宽的方法

在Nginx的conf.d的目录下,新建一个配置文件downloader.conf,并输入以下内容: limit_conn_zone $binary_remote_addr zone=perip:10m; server{ listen 5757; server_name 192...

2015-10-27 14:15:32

阅读数:1466

评论数:0

Apache Storm流处理有序性探究

本文假设读者已经对Storm的基础结构有了全面理解,并知道Nimbus与supervisor在集群之中所扮演的角色。之所以要理解Storm集群的并行机制,是为了能够对数据流中数据地处理顺序有一个深入地理解,这样才能更有信心地使用工具。 首先是需要了解一些与Storm集群并行机制相关地概念: 工...

2015-09-14 16:44:40

阅读数:4825

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭