函数的极限_函数极限

一、自变量趋近于有限值时函数的极限

1.函数极限定义之描述性定义:

如果在 𝑥→𝑥0 的过程中,对应函数值 𝑓(𝑥) 无限接近于确定的常数 𝐴 ,那么就说 𝐴 是 𝑓(𝑥) 当 𝑥→𝑥0 时的极限。记作

函数的极限_邻域_02

函数 𝑓(𝑥) 无限接近于常数 𝐴,就是 |𝑓(𝑥)−𝐴| 可以任意小,小到什么程度呢?就是可以小到你事先任意给定的任意小正数 𝜀 ,即 |𝑓(𝑥)−𝐴|<𝜀 。所以我们说𝑓(𝑥) 无限接近于常数 𝐴,是用 |𝑓(𝑥)−𝐴|<𝜀来刻画的。

 𝑓(𝑥) 无限接近于常数 𝐴,是在哪个过程中实现的呢?

是在 𝑥→𝑥0 的过程中实现的。所以只是对 𝑥0 附近的(或者说无限接近于 𝑥0 的)那些点,函数值满足|𝑓(𝑥)−𝐴|<𝜀( 𝜀 为任意给定的正数,可以任意小)。那么对 𝑥0 附近的 𝑥 ,我们怎么刻画呢?我们可以这样刻画: 0<|𝑥−𝑥0|<𝛿 , 𝛿 为某一个正数,用几何意义来说就是,在 𝑥0 的某一个去心邻域内(心邻域即在a的 邻域中去掉a的数的 集合,应用于高等数学)所有点的函数值满足不等式 |𝑓(𝑥)−𝐴|<𝜀 。这就是“在 𝑥→𝑥0 的过程中,对应函数值 𝑓(𝑥) 无限接近于确定的常数 𝐴”的实质。

2.函数极限定义之精确定义:( 𝜀−𝛿 语言):

设 𝑓(𝑥) 在点 𝑥0 的某个去心邻域内有定义,如果对于任意给定的正数 𝜀 ,总存在一个正数 𝛿 ,使对于适合不等式 0<|𝑥−𝑥0|<𝛿 的一切 𝑥 ,对应的函数值 𝑓(𝑥) 满足 |𝑓(𝑥)−𝐴|<𝜀 ,那么称常数 𝐴 为函数 𝑓(𝑥) 当 𝑥→𝑥0 时的极限,记作

函数的极限_取值_03

函数的极限_函数极限_04

注:(1)定义中 |𝑥−𝑥0|>0 表示 𝑥≠𝑥0 ,所以即使 𝑓(𝑥) 在 𝑥0 没有定义, 𝑓(𝑥0) 在 𝑥0 点也可以有极限。因为我们研究极限是研究 𝑥→𝑥过程中 𝑓(𝑥) 的变化趋势,而与 𝑓(𝑥) 在 𝑥0 处有无定义没有关系。

(2) 𝛿 的取值与 𝜀 有关,且 𝛿 不唯一。也就是说,任意给一个 𝜀 就会有一个 𝛿 与之对应,换一个 𝜀 就换一个 𝛿 ,这一点和数列极限中的 𝑁 是一样的。

 (3) lim𝑥→𝑥0𝑓(𝑥)=𝐴 的几何解释:|𝑓(𝑥)−𝐴|<𝜀等价于 𝐴−𝜀<𝑓(𝑥)<𝐴+𝜀 。对于任意给定的 𝜀>0 ,存在 𝑥0 的 𝛿 去心邻域 𝑈˚(𝑥0,𝛿) ,当 𝑦=𝑓(𝑥) 图像上的点横坐标落在𝑥0 的 𝛿 去心邻域 𝑈˚(𝑥0,𝛿) 内,这些点的纵坐标满足𝐴−𝜀<𝑓(𝑥)<𝐴+𝜀。即这些点落在下图中的红色虚线矩形框内:

函数的极限_函数极限_05

利用极限的定义证明函数的极限:

函数的极限_函数极限_06

3.极限的局部保号性定理

定理1:如果 lim𝑥→𝑥0𝑓(𝑥)=𝐴 ,且 𝐴>0(𝐴<0) ,那么存在 𝑥0 的去心邻域,当 𝑥 在该邻域时,有 𝑓(𝑥)>0(𝑓(𝑥)<0) 。

证明:因为lim𝑥→𝑥0𝑓(𝑥)=𝐴 ,且 𝐴>0 ,根据极限的定义中 𝜀 的任意性,仅仅针对此问题而言,我们不妨特意给定一个 𝜀 它满足 0<𝜀<𝐴 ,那么肯定会存在一个相应的 𝑥0 的去心邻域 𝑈˚(𝑥0,𝛿) ,使当 0<|𝑥−𝑥0|<𝛿 时, |𝑓(𝑥)−𝐴|<𝜀 ,即 𝐴−𝜀<𝑓(𝑥)<𝐴+𝜀 ①,又因为我们给定的 𝜀 满足 0<𝜀<𝐴,结合不等式①的左侧可知 𝑓(𝑥)>𝐴−𝜀>0 。证毕!

定理1':如果 lim𝑥→𝑥0𝑓(𝑥)=𝐴 (𝐴≠0) ,那么必存在 𝑥0 的某去心邻域,当 𝑥 在该邻域时,有 |𝑓(𝑥)|>|𝐴|/2 。

证明:因为 lim𝑥→𝑥0𝑓(𝑥)=𝐴 ,根据函数极限的定义,对给定 𝜀0=|𝐴|/2>0 ,必然有 𝛿>0 ,使当 0<|𝑥−𝑥0|<𝛿 时, |𝑓(𝑥)−𝐴|<𝜀,由绝对值不等式的特点,可以进一步有 ||𝑓(𝑥)|−|𝐴||≤|𝑓(𝑥)−𝐴|<𝜀0 ,所以 |𝑓(𝑥)|>|𝐴|−𝜀0=|𝐴|−|𝐴|/2=|𝐴|/2 。证毕!

定理2:如果在 𝑥0 的某个去心邻域内 𝑓(𝑥)≥0(𝑓(𝑥)≤0) ,而且 lim𝑥→𝑥0𝑓(𝑥)=𝐴 ,那么 𝐴≥0(𝐴≤0) 。

该定理的证明需要利用定理1的结论。下面我们来证明,

证明(反证法):存在 𝑥0 的某个去心邻域,使该邻域内 𝑓(𝑥)≥0 ,则极限值 𝐴≥0 。若不然,假设 𝐴<0 ,根据定理1,存在 𝑥0 的某个去心邻域,使当 𝑥 在该邻域内时, 𝑓(𝑥)<0 ,这与题设矛盾。证毕!

定理1和定理2都叫函数极限的局部保号性定理,这个定理在今后推导其它定理时是非常有用的,所以还请重视!

4.单侧极限

写在前面的话:我们需要知道当 𝑥→𝑥, 𝑓(𝑥) 趋近于某个常数时, 𝑥 可以从左侧趋近于 𝑥0 ,也可以从右侧趋近于 𝑥0 ,所以我们有必要讨论一下函数 𝑓(𝑥) 的单侧极限的定义:

如果对任给的 𝜀>0 ,总存在 𝛿>0 ,当 𝑥0−𝛿<𝑥<𝑥0 时, |𝑓(𝑥)−𝐴|<𝜀 ,那么称 𝐴 为 𝑓(𝑥) 当 𝑥→𝑥0 时的左极限

记作 或lim𝑥→𝑥0−𝑓(𝑥)=𝐴或𝑓(𝑥0−0)=𝐴 。

如果对任给的 𝜀>0 ,总存在 𝛿>0 ,当 𝑥0<𝑥<𝑥0+𝛿 时, |𝑓(𝑥)−𝐴|<𝜀 ,那么称 𝐴 为 𝑓(𝑥) 当 𝑥→𝑥0 时的右极限

记作 或lim𝑥→𝑥0+𝑓(𝑥)=𝐴或𝑓(𝑥0+0)=𝐴 。

函数极限与单侧极限的关系:当 𝑥→𝑥0 时,函数 𝑓(𝑥) 极限存在的充分必要条件是函数 𝑓(𝑥) 左极限、右极限都存在并且相等。

函数的极限_邻域_07

二、自变量趋近于无穷大时函数的极限

首先我们先搞清楚如下两个问题:

𝑥 趋近于无穷大: 𝑥→∞ ,指 |𝑥| 无限增大。

lim𝑥→∞𝑓(𝑥)=𝐴 :是指当|𝑥| 无限增大时, 𝑓(𝑥) 无限接近于 𝐴 。

这样我们就很容易理解自变量趋近于无穷大时函数极限的定义了,如下:

定义:设函数 𝑓(𝑥) 当 |𝑥| 大于某一正数时有定义。如果对于任意给定的正数 𝜀 ,总存在正数 𝑋 ,使当 |𝑥|>𝑋 时,不等式 |𝑓(𝑥)−𝐴|<𝜀 恒成立,则称 𝐴 为 𝑓(𝑥) 当 𝑥→∞ 时的极限,记作 或lim𝑥→∞𝑓(𝑥)=𝐴或𝑓(𝑥)→𝐴(𝑥→∞) 。 

 同样,自变量趋近于无穷大时函数的单侧极限定义如下:

lim𝑥→−∞𝑓(𝑥)=𝐴 定义为:如果对于任意给定的正数 𝜀 ,总存在正数 𝑋 ,使当 𝑥<−𝑋 时,不等式 |𝑓(𝑥)−𝐴|<𝜀 恒成立,则称 𝐴 为 𝑓(𝑥) 当 𝑥→−∞ 时的极限。

lim𝑥→+∞𝑓(𝑥)=𝐴 定义为:如果对于任意给定的正数 𝜀 ,总存在正数 𝑋 ,使当 𝑥>𝑋 时,不等式 |𝑓(𝑥)−𝐴|<𝜀 恒成立,则称 𝐴 为 𝑓(𝑥) 当 𝑥→+∞ 时的极限。

注:

①值得一提的是 lim𝑥→∞𝑓(𝑥)=𝐴 的充分必要条件是 lim𝑥→−∞𝑓(𝑥)=lim𝑥→+∞𝑓(𝑥)=𝐴 。

②lim𝑥→∞𝑓(𝑥)=𝐴的几何解释为:对任给的 𝜀>0 ,总存在正数 𝑋 ,使当 或𝑥>𝑋或𝑥<−𝑋 时, 𝑦=𝑓(𝑥) 的图像位于直线 𝑦=𝐴−𝜀 与 𝑦=𝐴+𝜀 之间。

函数的极限_邻域_08