lim
x
→
0
sin
x
=
1
\lim_{x\to 0}\frac{\sin}{x}=1
x→0limxsin=1
lim
x
→
∞
(
1
+
1
x
)
x
=
e
\lim_{x\to \infty}(1+\frac{1}{x})^x=e
x→∞lim(1+x1)x=e
lim
α
→
0
(
1
+
α
)
1
α
=
e
\lim_{\alpha\to 0}(1+\alpha)^\frac{1}{\alpha}=e
α→0lim(1+α)α1=e
lim
x
→
0
1
−
cos
x
sin
x
=
lim
x
→
0
tan
x
2
=
0
\lim_{x\to 0}\frac{1-\cos{x}}{\sin{x}}=\lim_{x\to 0}\tan{\frac{x}{2}}=0
x→0limsinx1−cosx=x→0limtan2x=0
lim
x
→
0
1
−
cos
x
x
2
=
1
2
\lim_{x\to 0}\frac{1-\cos{x}}{x^2}=\frac{1}{2}
x→0limx21−cosx=21
lim
x
→
0
arctan
x
x
=
1
\lim_{x\to 0}\frac{\arctan{x}}{x}=1
x→0limxarctanx=1