一、基本原理
选择一个基准数,通过一趟排序将比他小的数放在他左边,比他大的数放在他的右边。
- 选择基准数,通常是数列的第一个元素;
- 将比基准数小的数放在基准数左边,把比基准数大的数放在基准数的右边,所以基准数放在数列的中间;
- 对“基准数左侧数列”和"基准数右侧数列"执行以上操作。
二、算法分析
以数组{6, 3, 8, 2, 9, 1}为例:
第一轮left = 0, right = 5,i = left, j = right,基准数p=6
- j = 5:比较6和1,1<6,设置a[i++] = a[j],数组为:1, 3, 8, 2, 9, 1
- i = 1:比较6和3,3<6,不交换位置;
- i = 2:比较6和8,8>6,设置a[j++] = a[i],数组为:1, 3, 8, 2, 9, 8
- j = 4:比较6和9,9>6,不交换位置;
- j = 3:比较6和2,2>6,设置a[i++] = a[j],数组为:1, 3, 2, 2, 9, 8
不满足i < j循环结束,设置a[i=3] = p,数组为:1, 3, 2, 6, 9, 8
第二轮left = 0, right = 2,i = left, j = right,基准数p=1
- j = 2:比较2和1,1<2,不交换位置;
- i = 1:比较3和1,1<3,不交换位置;
不满足i < j循环结束,设置a[i=0] = p,数组为:1, 3, 2, 6, 9, 8
第三轮left = 0, right = -1,此轮无效,直接退出
第四轮left = 1, right = 2,i = left, j = right,基准数p=3
- j = 2:比较2和3,设置a[i++]= a[j],数组为:1, 2, 2, 6, 9, 8
不满足i<j结束循环,设置a[i=2]=3,数组为:1, 2, 3, 6, 9, 8
第五轮left = 1, right = 1,此轮无效,直接退出
第六轮left = 3, right = 2,此轮无效,直接退出
第七轮left = 4, right = 5,i = left, j = right,基准数p=9
- j=6:比较8和9,8 < 9,设置a[i++] = a[j],数组为:1, 2, 3, 6, 8, 8
不满足i<j结束循环,设置a[i = 5]=9,数组为:1, 2, 3, 6, 8, 9
第八轮left = 4, right = 4,此轮无效,直接退出
第九轮left = 6, right = 5,此轮无效,直接退出
三、算法实现
static void quickSort(int left, int right) {
if (left >= right) {
return;
}
int p = arr[left];
int i = left;
int j = right;
while (i < j) {
for (; i < j && arr[j] > p; j --) {
}
if (i < j) {
arr[i++] = arr[j];
}
for (; i < j && arr[i] < p; i ++) {
}
if (i < j) {
arr[j--] = arr[i];
}
}
arr[i] = p;
quickSort(left, i - 1);
quickSort(j+1, right);
}