话不多说,直接看题:
显然,我们可以用BFS,其中,对于判重操作,我们可以把这矩阵化成字符串的形式再用map去存,用a数组去重现字符串(相当于map映射的反向操作)。移动空格先找到x的位置再推算出在矩阵里的位置进行移动即可。
至于如何回溯,我们创造last数组来看它上一个是谁,用form数组记录变化的操作。
然后dfs回溯输出即可。
下面是AC代码:
#include<bits/stdc++.h>
using namespace std;
#define N 363000
int last[N],cnt;
int form[N];
char dd;
map<string,int> mp;
string a[N],s1,s2="12345678x";
queue<int> q;
int dir[4][2]={{0,1},{0,-1},{-1,0},{1,0}};
char ck[4]={'r','l','u','d'};
int bfs(string s1,string s2){
mp[s1]=1;
cnt=1;
last[cnt]=0;
a[cnt]=s1;
q.push(cnt);
while(!q.empty()){
int tmp=q.front();
q.pop();
int tt=a[tmp].find('x');
int x=tt/3,y=tt%3;
for(int i=0;i<4;i++){
string nxt=a[tmp];
int x1=x+dir[i][0];
int y1=y+dir[i][1];
if(x1<0||x1>=3||y1<0||y1>=3) continue;
swap(nxt[tt],nxt[x1*3+y1]);
if(mp.find(nxt)!=mp.end()) continue;
mp[nxt]=++cnt;
last[cnt]=tmp;
form[cnt]=i;
a[cnt]=nxt;
q.push(cnt);
if(nxt==s2) return 1;
}
}
return 0;
}
void dfs(int cnt){
if(cnt==1) return;
dfs(last[cnt]);
cout<<ck[form[cnt]];
}
int main(){
for(int i=1;i<=9;i++){
cin>>dd;
s1+=dd;
}
if(bfs(s1,s2)==0) cout<<"unsolvable";
else dfs(mp[s2]);
}
注意:方向数组中(1,0)是down(因为这wa了好久)
下面来一道刚刚比赛过的题:
这名字显然是个坑,看到数据范围就知道要暴力了3^10是可以接受的,于是我们用dfs写
下面是AC代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,t,a[20],min1=20;
struct node{
int u,v;
}q[20];
void deal(){
int cnt=1;
for(int i=2;i<=n;i++){
if(a[i]>a[1]) cnt++;
}
min1=min(min1,cnt);
}
void dfs(int x){
if(x>m){
deal();
return ;
}
for(int i=1;i<=3;i++){
if(i==1){
a[q[x].u]+=3;
dfs(x+1);
a[q[x].u]-=3;
}
else if(i==2){
a[q[x].v]+=3;
dfs(x+1);
a[q[x].v]-=3;
}
else{
a[q[x].u]+=1;
a[q[x].v]+=1;
dfs(x+1);
a[q[x].u]-=1;
a[q[x].v]-=1;
}
}
return ;
}
int main(){
cin>>t;
while(t--){
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=m;i++) cin>>q[i].u>>q[i].v;
dfs(1);
cout<<min1<<endl;
min1=20;
}
}