AI在量化交易中的应用:模型选择与实践指南

引言

量化交易是一种基于数学和统计模型的交易策略,它依赖于大量市场数据的分析和处理,以发现市场中的规律并从中获利。近年来,随着人工智能技术的快速发展,AI在量化交易领域的应用越来越广泛,为量化交易带来了新的发展机遇和挑战。本报告将全面探讨可用于量化交易的AI模型类型、实际应用案例以及简单的应用示例,帮助读者深入了解AI在量化交易中的重要作用。

量化交易的基本概念与方法

量化交易的定义与特点

量化交易是指采用定量的方法对交易进行分析,从而得出结论,指导交易的进行。大多数量化交易通过构建数学模型对价格、风险进行科学的分析与预测,从而制定具体的交易决策[2]。量化交易主要依靠计算机自动产生交易策略,通过建立数学模型来实现交易理念,并具有完整的评价体系。

传统的投资方法主要有基本面分析法和技术分析法,而量化交易则更加依赖于数据和模型。量化交易者需要收集和整理大量的市场数据,包括价格、成交量、持仓量等,这些数据是构建交易模型的基础[0]。

量化交易的主要类型

量化交易包含多种类型,主要包括:

  1. 量化选股:分为公司估值法、趋势法、资金法(追随资金流向)等
  2. 量化择时:通过技术指标或市场情绪指标判断买卖时机
  3. 股指期货套利:利用股指期货与现货之间的价格差异获利
  4. 商品期货套利:利用商品期货市场的价格差异获利
  5. 统计套利:利用统计学方法发现资产价格之间的关系
  6. 交易算法:设计特定的交易算法以优化执行过程
  7. 资产配置:通过数学模型优化投资组合的配置
  8. 风险控制:利用模型监控和管理投资组合的风险

AI在量化交易中的应用价值

AI相对于传统量化投资的优势

AI相对于传统量化投资具有显著优势。传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,而AI技术则可以更有效地处理和分析这些数据,发现可能被传统方法忽略的模式和关系[5]。

AI可以利用机器学习和深度学习算法分析大量历史数据,发现隐藏在数据中的模式和关系,从而帮助投资者做出更明智的决策[8]。此外,AI还可以处理和分析非结构化数据,如新闻、社交媒体帖子等,这些数据可能包含对市场走势有重要影响的信息。

AI在量化交易中的主要应用领域

AI在量化交易中的应用主要体现在以下几个方面:

  1. 预测和模式识别:AI可以分析大量历史数据,发现隐藏在数据中的模式和关系,预测市场走势
  2. 投资组合优化:AI可以帮助投资者优化投资组合的配置,平衡风险和收益
  3. 风险管理:AI可以监控和管理投资组合的风险,预测潜在的市场波动
  4. 自动化交易:AI可以自动化交易过程,根据预设的规则和模型执行交易

适用于量化交易的AI模型

传统机器学习模型

在量化交易中,传统的机器学习模型被广泛应用于各种场景。以下是几种常见的传统机器学习模型:

  1. 回归模型:回归模型是量化交易中最基本的模型之一,用于预测连续变量。在量化交易中,回归模型通常被用于预测股票价格、收益率等连续变量。例如,可以使用线性回归模型预测股票价格的未来走势,或者使用逻辑回归模型预测股票价格的涨跌方向。

  2. 决策树和随机森林:决策树和随机森林是另一种常用的机器学习模型,用于分类和回归任务。在量化交易中,决策树和随机森林可以用于预测股票价格的涨跌方向,或者识别影响股票价格的关键因素。随机森林通过集成多个决策树,可以提高模型的准确性和稳定性。

  3. 支持向量机(SVM):支持向量机是一种强大的机器学习模型,适用于分类和回归任务。在量化交易中,SVM可以用于预测股票价格的涨跌方向,或者识别市场中的异常情况。SVM的一个主要优势是能够在高维空间中找到最优的分类超平面,适用于处理复杂的金融数据。

  4. 聚类算法:聚类算法可以将相似的股票或市场状态分组,帮助投资者发现市场中的规律和模式。例如,可以使用K-means聚类算法将股票按照其价格走势分组,或者使用层次聚类算法识别市场中的主要趋势。

  5. 主成分分析(PCA):主成分分析是一种降维技术,可以将高维的金融数据投影到低维的空间中,帮助投资者发现数据中的主要特征和模式。在量化交易中,PCA可以用于降维特征空间,减少模型的复杂性和计算成本。

深度学习模型

深度学习模型在量化交易中的应用越来越广泛,主要因为它们能够处理复杂的非线性关系和高维数据。以下是几种适用于量化交易的深度学习模型:

  1. 多层感知机(MLP):MLP是一种最基本的神经网络模型,由多个全连接的神经层组成。在量化交易中,MLP可以用于预测股票价格、收益率等连续变量,或者预测股票价格的涨跌方向。MLP的一个主要优势是能够捕捉数据中的非线性关系,适用于处理复杂的金融数据。

  2. 卷积神经网络(CNN):CNN最初是为处理图像数据而设计的,但在量化交易中,CNN也可以用于处理时间序列数据,例如股票价格走势。CNN的一个主要优势是能够自动提取数据中的特征,减少特征工程的工作量。

  3. 循环神经网络(RNN)和长短期记忆网络(LSTM):RNN和LSTM是专门设计用于处理序列数据的神经网络模型,特别适用于处理时间序列数据,例如股票价格走势。在量化交易中,RNN和LSTM可以用于预测股票价格的未来走势,或者识别市场中的趋势和模式。

  4. 注意力机制(Attention Mechanism):注意力机制最初是为自然语言处理而设计的,但在量化交易中,注意力机制也可以用于处理时间序列数据,帮助模型关注重要的时间点或特征。注意力机制可以提高模型的准确性和可解释性。

  5. 生成对抗网络(GAN):GAN由两个神经网络组成,一个生成器和一个判别器,它们相互竞争以生成逼真的数据。在量化交易中,GAN可以用于生成合成的金融数据,用于模型训练和测试,或者用于预测市场中的极端情况。

强化学习模型

强化学习是一种机器学习范式,其中智能体通过与环境互动来学习最优策略。在量化交易中,强化学习可以用于设计最优的交易策略,平衡风险和收益。以下是几种适用于量化交易的强化学习模型:

  1. Q-learning:Q-learning是一种值迭代算法,用于学习状态-动作对的价值。在量化交易中,Q-learning可以用于学习最优的买卖时机,最大化投资组合的收益。

  2. Deep Q-Network(DQN):DQN是Q-learning的深度学习版本,使用神经网络来近似Q函数。在量化交易中,DQN可以用于学习复杂的交易策略,处理高维的市场数据。

  3. 策略梯度方法:策略梯度方法是一种直接优化策略参数的方法,适用于连续的动作空间。在量化交易中,策略梯度方法可以用于优化投资组合的配置,平衡风险和收益。

  4. 演员-评论家方法:演员-评论家方法是一种结合了值函数和策略的强化学习方法,适用于复杂的环境。在量化交易中,演员-评论家方法可以用于设计最优的交易策略,处理市场的不确定性和波动性。

AI在量化交易中的应用案例

股票价格预测与交易策略

股票价格预测是量化交易中最经典的问题之一,也是AI技术应用最广泛的领域之一。以下是几个具体的AI在股票价格预测和交易策略中的应用案例:

  1. 回归模型在股票价格预测中的应用
    在一个具体的AI量化交易案例中,研究人员采用了回归模型,将股票价格与大盘价格的差作为目标,来减小均方差。有了预测值之后,调用回溯函数来进行模拟交易[20]。这种方法可以帮助投资者预测股票价格的未来走势,制定相应的交易策略。

  2. 机器学习在量化择时中的应用
    在量化择时中,机器学习模型可以用来预测市场的短期走势,帮助投资者决定买卖时机。例如,可以使用决策树或随机森林模型预测未来N日的收益率,或者使用神经网络模型预测市场的波动率。这些预测可以帮助投资者制定最优的买卖策略,最大化投资组合的收益。

  3. 深度学习在股票价格预测中的应用
    深度学习模型,特别是循环神经网络(RNN)和长短期记忆网络(LSTM),在股票价格预测中表现出了优异的性能。这些模型可以捕捉时间序列数据中的复杂模式和趋势,预测股票价格的未来走势。例如,研究人员可以使用LSTM模型预测股票价格的未来N天走势,或者使用注意力机制捕捉重要的时间点和特征。

  4. 强化学习在交易策略中的应用
    强化学习可以用于设计最优的交易策略,平衡风险和收益。例如,可以使用Q-learning或Deep Q-Network(DQN)学习最优的买卖时机,最大化投资组合的收益。这种方法可以帮助投资者在复杂的市场环境中做出最优的决策,提高投资组合的绩效。

多因子选股策略

多因子选股策略是一种应用十分广泛的选股策略,其基本思想是找到某些和收益率最相关的指标,找出股票收益率与各种指标之间的"关系",借此"关系"建立股票组合[18]。AI技术在多因子选股策略中的应用可以提高选股的准确性和效率。

  1. 机器学习在因子筛选中的应用
    在多因子选股策略中,机器学习模型可以用来筛选和优化因子,提高选股的准确性和效率。例如,可以使用随机森林或LASSO回归模型筛选出对股票收益率有显著影响的因子,或者使用聚类算法将相似的股票分组,识别出具有相似特性的股票组合。

  2. 深度学习在因子构建中的应用
    深度学习模型可以用来构建新的因子,捕捉传统因子可能忽略的模式和关系。例如,可以使用神经网络模型从大量的财务数据和市场数据中提取特征,构建新的选股因子。这些新的因子可能包含更多的信息,提高选股的准确性和收益。

  3. AI在风险控制中的应用
    在多因子选股策略中,风险控制是非常重要的。AI技术可以用来监控和管理投资组合的风险,预测潜在的市场波动。例如,可以使用机器学习模型预测股票的波动率和相关性,优化投资组合的风险敞口,降低投资组合的波动性和风险。

市场情绪分析与预测

市场情绪分析与预测是量化交易中的另一个重要应用领域,可以帮助投资者了解市场的整体情绪和趋势,制定相应的交易策略。

  1. 自然语言处理在新闻分析中的应用
    自然语言处理(NLP)技术可以用来分析新闻、社交媒体帖子等非结构化数据,提取市场情绪和趋势。例如,可以使用词袋模型、TF-IDF或词嵌入技术分析新闻标题和内容,预测市场对这些新闻的反应。这些预测可以帮助投资者提前调整投资组合,把握市场机会。

  2. 深度学习在社交媒体分析中的应用
    深度学习模型可以用来分析社交媒体上的帖子和评论,提取市场情绪和趋势。例如,可以使用循环神经网络(RNN)或长短期记忆网络(LSTM)分析Twitter或微博上的帖子,预测市场对这些帖子的反应。这些预测可以帮助投资者了解市场的实时情绪和趋势,制定相应的交易策略。

  3. 多模态学习在市场情绪分析中的应用
    多模态学习可以整合多种数据源,包括文本、图像、视频等,提供更全面的市场情绪分析。例如,可以使用卷积神经网络(CNN)分析新闻图片和视频,结合自然语言处理技术分析新闻文本,提供更全面的市场情绪分析。这些分析可以帮助投资者更准确地把握市场情绪和趋势,制定更有效的交易策略。

另类数据在量化交易中的应用

另类数据是指非传统的、非常规的金融市场数据,例如卫星图像、专利申请、招聘广告等。这些数据可能包含对市场走势有重要影响的信息,但传统量化方法可能难以捕捉这些信息。AI技术在另类数据的处理和分析中发挥着重要作用。

  1. 图像识别在卫星图像分析中的应用
    图像识别技术可以用来分析卫星图像,提取与经济活动相关的指标。例如,可以使用卷积神经网络(CNN)分析零售店的停车场占用率,预测零售业的销售情况;或者分析工厂的生产活动,预测工业生产的趋势。这些预测可以帮助投资者把握经济活动的变化,提前调整投资组合。

  2. 自然语言处理在专利分析中的应用
    自然语言处理技术可以用来分析专利申请,提取与技术创新相关的指标。例如,可以使用词嵌入技术和主题模型分析专利文本,识别出具有创新潜力的公司和行业。这些分析可以帮助投资者发现具有增长潜力的股票,提高投资组合的收益。

  3. 深度学习在招聘广告分析中的应用
    深度学习模型可以用来分析招聘广告,提取与劳动力市场相关的指标。例如,可以使用神经网络模型分析招聘广告的数量、职位和要求,预测劳动力市场的趋势和变化。这些预测可以帮助投资者把握经济周期的变化,制定相应的投资策略。

大语言模型在量化交易中的应用

大语言模型(如GPT系列)在量化交易中的应用是一个新兴的研究方向,这些模型可以处理和生成大量的文本数据,帮助投资者发现市场中的规律和模式。

  1. 大语言模型在新闻分析中的应用
    大语言模型可以用来分析新闻和市场报告,提取市场情绪和趋势。例如,可以使用GPT模型生成新闻摘要和关键词,帮助投资者快速了解市场的最新动态。这些分析可以帮助投资者把握市场的机会和风险,制定更有效的交易策略。

  2. 大语言模型在投资组合管理中的应用
    大语言模型可以用来生成投资组合报告和建议,帮助投资者优化投资组合的配置。例如,可以使用GPT模型分析投资组合的表现和风险,生成个性化的投资建议。这些建议可以帮助投资者做出更明智的决策,提高投资组合的绩效。

  3. 大语言模型在量化策略开发中的应用
    大语言模型可以用来生成量化策略代码和文档,帮助开发者快速实现新的交易想法。例如,可以使用GPT模型生成符合规范、能够直接接入系统进行回测的策略代码。这种标准化的策略框架接口,可以为利用大型语言模型(如DeepSeek)快速生成符合规范、能够直接接入系统进行回测的策略代码提供了极大的便利[22]。这可以帮助开发者更高效地开发和测试新的量化策略,提高开发效率和创新能力。

AI量化交易的实现与实践

开源工具与框架

在AI量化交易的实现过程中,有许多开源工具和框架可供选择,这些工具和框架可以帮助开发者快速实现新的交易想法,提高开发效率和创新能力。

  1. BigQuant平台
    BigQuant是一个以人工智能为核心的量化交易平台,为量化投资宽客提供机器学习AI技术、股票期货金融数据、高速精准回测和量化交易接口以及海量因子和量化策略[27]。BigQuant平台上的AIStudio是专门为使用AI量化开发者设计的免费量化交易软件开发工具,包括数据分析、因子挖掘、模型开发、回测和自动化交易等功能[29]。此外,BigQuant平台上还有机器学习量化投资实战指南,详细介绍了主流机器学习方法在量化交易中的应用[17]。

  2. Alphalens
    Alphalens是全球最大量化网站quantopian开发维护的量化三件套之一,用于股票因子(alpha)的性能分析。alphalens与zipline以及pyfolio常常一同使用,其中,pyfolio提供财务组合的性能和风险分析,zipline用于量化策略回测[25]。这些工具可以帮助开发者快速实现和测试新的量化策略,提高开发效率和创新能力。

  3. 功夫量化
    功夫量化是一款面向金融行业的AI数据分析工具,由国内AI创新企业功夫源科技开发,能够迅速在海量金融数据中进行精准搜索,帮助用户快速获取投资决策所需的信息[26]。用户无需编程,就可以利用AI技术进行金融数据分析和量化交易。

  4. Python量化交易库
    Python是一种高效、易用的编程语言,在量化交易领域得到了广泛的应用[13]。有许多Python库可以帮助开发者实现量化交易,例如pandas用于数据分析,numpy用于数值计算,scikit-learn用于机器学习,tensorflow或pytorch用于深度学习等。这些库可以帮助开发者快速实现和测试新的量化策略,提高开发效率和创新能力。

AI量化交易的实现步骤

AI量化交易的实现通常包括以下几个步骤:

  1. 数据收集与预处理
    量化交易者需要收集和整理大量的市场数据,包括价格、成交量、持仓量等。这些数据是构建交易模型的基础[0]。在数据收集之后,还需要对数据进行预处理,包括清洗、标准化、特征提取等,为后续的模型训练和应用做准备。

  2. 模型选择与训练
    根据具体的应用场景和需求,选择合适的AI模型进行训练。例如,对于股票价格预测,可以选择回归模型、深度神经网络或强化学习模型;对于多因子选股,可以选择随机森林、支持向量机或神经网络模型等。模型训练需要使用历史数据,通过优化算法找到最优的模型参数,提高模型的准确性和稳定性。

  3. 模型评估与优化
    在模型训练之后,需要对模型进行评估和优化。评估可以使用各种指标,例如准确率、精确率、召回率、F1分数等,根据具体的应用场景选择合适的评估指标。优化可以通过调整模型参数、改进特征工程或选择不同的模型架构来提高模型的性能。

  4. 回测与模拟交易
    在模型开发完成后,需要进行回测和模拟交易,验证模型在历史数据上的表现。回测可以帮助开发者了解模型在不同市场环境下的表现,评估模型的风险和收益。模拟交易可以进一步验证模型在实际交易中的表现,为实际交易提供参考。

  5. 实际交易与监控
    在模型验证之后,可以进行实际交易。在实际交易过程中,需要持续监控模型的表现,及时调整和优化模型,适应市场环境的变化。监控可以使用各种指标,例如收益、波动率、最大回撤等,评估模型的绩效和风险。

简单的AI量化交易示例

以下是一个简单的AI量化交易示例,使用回归模型预测股票价格与大盘价格的差,减小均方差,然后调用回溯函数进行模拟交易[20]:

python

复制

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 假设我们有一个包含股票价格和大盘价格的数据集
data = pd.read_csv('stock_and_market_data.csv')

# 提取特征和目标变量
X = data[['market_price']]  # 大盘价格作为特征
y = data['stock_price'] - data['market_price']  # 股票价格与大盘价格的差作为目标

# 划分训练集和测试集
train_size = int(len(data) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]

# 训练回归模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'均方误差: {mse}')

# 回测函数
def backtest(model, data):
    # 进行模拟交易
    # 这里只是一个简单的示例,实际应用中需要更复杂的逻辑
    positions = []
    for i in range(len(data)):
        if i == 0:
            positions.append(0)  # 初始无仓位
            continue
        # 使用模型预测股票价格与大盘价格的差
        market_price = data['market_price'][i-1]
        X = pd.DataFrame({'market_price': [market_price]})
        pred = model.predict(X)[0]
        # 如果预测值为正,做多;如果为负,做空
        if pred > 0:
            positions.append(1)  # 做多
        else:
            positions.append(-1)  # 做空
    return positions

# 进行回测
positions = backtest(model, data)
print('模拟交易结果:', positions)

这个简单的示例展示了如何使用回归模型预测股票价格与大盘价格的差,然后基于预测结果进行模拟交易。实际应用中,模型和交易策略会更加复杂,需要考虑更多的因素,例如交易成本、滑点、市场冲击等。

AI量化交易的挑战与未来趋势

技术挑战

AI量化交易面临许多技术挑战,包括:

  1. 数据质量问题:量化交易依赖于大量高质量的市场数据,但数据中可能存在噪声、缺失值和异常值等问题,影响模型的准确性和稳定性。

  2. 过拟合问题:在模型训练过程中,模型可能过度拟合历史数据,导致在实际交易中表现不佳。为了避免过拟合,需要使用交叉验证、正则化和数据增强等技术。

  3. 计算资源需求:AI模型,特别是深度学习模型,需要大量的计算资源进行训练和推理。在实际应用中,需要优化模型架构和训练过程,减少计算成本。

  4. 模型解释性:AI模型,特别是深度学习模型,通常被视为"黑盒子",难以解释其决策过程。在金融领域,解释性和透明度非常重要,可以帮助投资者理解模型的决策依据,增强信任感。

  5. 监管合规:AI量化交易需要遵守各种金融监管规定,确保交易的合法性和合规性。在实际应用中,需要了解和遵守相关的监管规定,避免法律风险。

未来发展趋势

AI量化交易的未来发展趋势包括:

  1. 大语言模型的应用:大语言模型(如GPT系列)在量化交易中的应用是一个新兴的研究方向。这些模型可以处理和生成大量的文本数据,帮助投资者发现市场中的规律和模式。例如,可以使用大语言模型分析新闻和市场报告,提取市场情绪和趋势;或者生成投资组合报告和建议,帮助投资者优化投资组合的配置[24]。

  2. 多模态学习的应用:多模态学习可以整合多种数据源,包括文本、图像、视频等,提供更全面的市场分析。例如,可以使用卷积神经网络分析新闻图片和视频,结合自然语言处理技术分析新闻文本,提供更全面的市场情绪分析。

  3. 强化学习的应用:强化学习可以用于设计最优的交易策略,平衡风险和收益。例如,可以使用Q-learning或Deep Q-Network学习最优的买卖时机,最大化投资组合的收益。这种方法可以帮助投资者在复杂的市场环境中做出最优的决策,提高投资组合的绩效。

  4. 分布式计算和边缘计算:随着数据量的增加和模型复杂性的提高,分布式计算和边缘计算将成为AI量化交易的重要技术手段。这些技术可以帮助处理和分析大量的市场数据,提高模型的训练和推理速度。

  5. AI与人类智能的结合:AI量化交易的未来发展趋势是AI与人类智能的结合,形成人机协同的工作模式。AI可以处理和分析大量的市场数据,发现市场中的规律和模式;人类可以提供战略决策和风险管理,确保交易的合法性和合规性。这种结合可以充分发挥AI和人类的优势,提高量化交易的效率和准确性。

结论

AI在量化交易中的应用已经取得了显著的成果,为投资者提供了新的工具和方法,帮助他们发现市场中的规律和模式,做出更明智的决策。从回归模型到深度学习模型,从传统机器学习到强化学习,各种AI模型在量化交易中都有广泛的应用。

然而,AI量化交易也面临许多挑战,包括数据质量问题、过拟合问题、计算资源需求和模型解释性等。在未来的发展中,大语言模型、多模态学习、强化学习、分布式计算和边缘计算等技术将为AI量化交易带来新的机遇和挑战。

AI与人类智能的结合将成为未来的重要趋势,形成人机协同的工作模式,充分发挥AI和人类的优势,提高量化交易的效率和准确性。随着技术的不断发展和市场的变化,AI量化交易将继续演进,为投资者提供更强大的工具和方法,帮助他们在复杂的市场环境中把握机会,控制风险,实现投资目标。

参考文献

[0] 如何了解量化交易的基本概念 - 和讯网. https://m.hexun.com/futures/2024-08-18/214044487.html.

[2] [PDF] 第1 章量化交易概述. https://www.tup.tsinghua.edu.cn/upload/books/yz/092820-01.pdf.

[5] 机器学习量化投资实战指南 - BigQuant. https://bigquant.com/wiki/doc/xKO5e4qSRT.

[8] 2024年量化交易与人工智能:Python库的应用与效用 - 知乎专栏. https://zhuanlan.zhihu.com/p/679115361.

[13] AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀-CSDN博客. https://blog.csdn.net/2301_82275412/article/details/138338658.

[17] 机器学习量化投资实战指南 - BigQuant. https://bigquant.com/wiki/doc/xKO5e4qSRT.

[18] AI加持下的量化多因子选股策略 - 知乎专栏. https://zhuanlan.zhihu.com/p/671072191.

[20] AI量化交易案例 - CSDN博客. https://blog.csdn.net/2301_81887304/article/details/135689551.

[22] 【AI量化第24篇】KhQuant 策略框架深度解析:让策略开发回归本质. https://zhuanlan.zhihu.com/p/1893566637367592231.

[24] AI大模型赋能金融市场量化投资?基于另类数据与传统金融数据的研究. https://cjoe.cjoe.ac.cn/CN/10.12012/CJoE2023-0172.

[25] 史上最全AI股票量化交易工具和开源项目汇总 - 知乎专栏. https://zhuanlan.zhihu.com/p/562878605.

[26] 功夫量化- AI金融数据分析和量化交易工具 - AI工具集. https://ai-bot.cn/sites/11407.html.

[27] BigQuant量化交易平台- AI人工智能量化投资交易平台. https://bigquant.com/.

[29] 免费版量化交易软件有哪些 - BigQuant. https://bigquant.com/wiki/doc/HtgtmB1kUN.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值