- 博客(65)
- 收藏
- 关注
原创 悲观与协同:人工智能在小说创作中的情感表达与多智能体协作
未来,多智能体系统将朝着智能体协作能力的提升、智能体专业化的深入、人机协作模式的创新、交互式和适应性创作的拓展以及多智能体系统的社会影响和伦理问题的重视方向发展。情感AI能够生成具有情感深度的角色和情节,提供创意和灵感,提高创作效率。未来,情感AI将朝着情感理解与表达能力的提升、情感计算与自然语言生成的融合、个性化情感表达的实现、跨媒体情感表达的拓展以及情感伦理与社会责任的重视方向发展。例如,情感AI可以生成具有情感深度的角色和情节,多智能体系统则可以处理这些角色和情节的交互和发展,形成完整的故事。
2025-06-05 23:26:06
759
原创 软件公司的六大核心趋势
未来软件公司的核心竞争力将不再局限于代码编写能力,而是AI 工具的驾驭能力、业务场景的理解能力、数据资产的运营能力。能够率先构建 “智能开发 - 敏捷交付 - 持续优化” 闭环的企业,将在这场产业变革中占据先机。同时,如何平衡技术创新与伦理合规、如何在生态竞争中找到生存空间,将成为所有软件公司面临的共同课题。未来软件公司的人才结构会有哪些变化?如何应对AI编程工具带来的市场竞争?AI大模型会对软件测试行业产生哪些影响?
2025-06-02 16:02:47
911
原创 基于智能体的多角色联合写作协作创作平台
接入层:负责用户接入和身份验证,包括 Web 端和移动端的 Flutter 应用业务逻辑层:核心智能体系统和业务流程处理,由 FastAPI 实现数据层:存储写作内容、用户信息、智能体配置等数据AI 服务层:提供基础 AI 能力,如语言模型调用、文本分析等。
2025-06-02 15:39:37
254
原创 人工智能大模型量化炒股项目详细设计
本项目旨在构建一个基于人工智能大模型的量化炒股系统,通过整合市场数据收集、预处理、特征工程、模型训练与预测、策略生成与回测等核心功能,为投资者提供数据驱动的交易决策支持。
2025-06-02 10:30:08
534
原创 Flutter 项目中使用 build_runner 的详细教程和示例
创建构建器:创建一个 Dart 类,定义处理文件的逻辑。配置构建系统:在build.yaml文件中配置构建器。定义构建目标:在targets部分指定构建器应用于哪些文件或目录。
2025-05-29 22:07:34
312
原创 RAG与MCP比较分析:连接外部数据源的两种AI技术方案
本报告将深入分析RAG和MCP的技术原理、优缺点,并探讨它们在不同场景下的适用性,以帮助读者理解这两种技术的本质区别和最佳应用场景。:企业需要评估自己的技术能力和资源,包括是否有现成的向量数据库和嵌入模型,是否有能力实现和维护符合MCP标准的服务器和客户端等。企业需要密切关注这些技术的发展趋势,根据自己的需求和资源情况,选择最适合的技术方案,以获取最大的价值[RAG的维护成本主要体现在向量数据库的维护上,而MCP的维护成本则体现在维护符合MCP标准的服务器和客户端上。
2025-05-29 20:17:31
579
原创 NVIDIA 驱动和 NVML 库版本不匹配的问题解
sudo apt install nvidia-driver-535 # 或者使用 ubuntu-drivers 推荐的版本。我看到你的系统已经安装了 NVIDIA 驱动 570.133.20 版本。如果还有问题,请告诉我具体的错误信息!如果遇到任何问题,请告诉我具体的错误信息。看起来是 NVIDIA 驱动和 NVML 库版本不匹配的问题。# 检查 PyTorch 版本和 CUDA 支持。# 安装支持 CUDA 的 PyTorch。# 检查 NVIDIA 驱动状态。# 检查 CUDA 版本。
2025-05-28 17:40:08
813
原创 Docker Compose 文件中设置Qdrant 的持久化存储
正确设置挂载目录的权限是确保 Qdrant 数据持久化的关键。建议:设置目录权限为755。将目录所有者设置为当前用户(或容器运行的用户)。通过查看容器日志,及时发现并解决权限问题。如果权限设置正确,Qdrant 容器将能够正常访问和写入挂载目录,数据也将被持久化存储。
2025-05-28 16:29:25
895
原创 Docker Compose 运行 Qdrant 的详细步骤
此配置文件定义了三个 Qdrant 节点,分别运行在不同的机器上,通过 Raft 协议实现集群功能。通过以上步骤,你可以在本地或集群环境中使用 Docker Compose 快速部署 Qdrant。此外,可以通过访问 Qdrant 的 REST API 来验证其是否正常工作。配置了 Qdrant 的集群模式,如果不需要集群,可以设置为。挂载了一个本地目录到容器中,用于持久化数据。,则说明 Qdrant 已成功运行。在这里,你可以查看集合、向量等信息。映射了容器的端口到主机的端口,参数表示在后台运行容器。
2025-05-27 11:14:22
187
原创 Ollama 接口中设置系统提示词(system_prompt)
可以将系统提示词与其他消息(如用户消息、AI 助手消息)一起传递,适合复杂的多轮对话场景。:适用于单轮对话或简单的多轮对话,尤其是当系统提示词不需要频繁变化时。:适用于需要动态调整系统提示词或在多轮对话中逐步构建上下文的场景。如果你需要处理复杂的多轮对话,或者需要动态调整系统提示词,推荐在。如果你的对话场景相对简单,系统提示词固定,推荐使用。适用于复杂的多轮对话场景,需要动态调整系统提示词。适用于简单的对话场景,系统提示词不需要频繁变化。:代码结构简单,易于理解和维护。参数直接传递系统提示词。
2025-05-24 21:04:13
223
原创 MongoDB 的数据库设计示例
json"name": "数据分析项目模板","description": "用于启动数据分析项目的模板","content": "我需要分析以下数据集:{dataset}\n目标是:{objective}\n请提供完整的分析流程和代码。",引用关系:使用 ObjectId 在集合之间建立引用,如用户与智能体、对话与会话等时间追踪:为每个文档添加了创建时间和更新时间统计信息:收集使用数据以支持分析和优化版本控制:为智能体维护版本历史扩展性:通过插件和知识库支持功能扩展用户体验权限管理。
2025-05-21 09:09:06
695
原创 Pydantic Python 数据验证和设置管理库
Python复制id: intname: stremail: stris_active: bool = False # 默认值# 创建一个 User 实例# 输出:Pydantic 是一个强大的工具,用于数据验证和设置管理。通过定义模型和字段,Pydantic 可以自动验证数据的类型和格式,并提供序列化功能。它广泛用于 FastAPI 等框架中,用于处理请求数据的验证和响应数据的序列化。
2025-05-19 09:28:21
700
原创 AI对话管理系统设计与实现:基于MongoDB、FastAPI、Flutter和Ollama
本研究报告详细介绍了如何设计和实现一个AI对话管理系统,该系统基于MongoDB数据库、FastAPI后端框架、Flutter前端框架和Ollama AI模型库。模型设置管理:支持选择不同的AI模型,配置模型参数和提示词对话历史管理:记录和管理对话历史,提供查询和导出功能用户界面:提供对话列表、对话详情、模型设置等界面性能优化:通过数据库优化、API优化和前端优化提高系统性能安全设计:通过数据加密、API安全和前端安全保护系统安全扩展性设计:支持模型扩展、功能扩展和平台扩展。
2025-05-16 13:55:17
1025
原创 FastAPI + Ollama AI提示词角色参数设定详细教程与示例
FastAPI + Ollama AI提示词角色参数设定详细教程与示例。
2025-05-15 21:05:33
1052
原创 在 mongosh 中初始化副本集
mongosh是 MongoDB 的新命令行工具,已经替代了旧版本的mongo。如果您需要使用旧版本的mongo,可以安装较早版本的 MongoDB。如果您只需要使用 MongoDB 的功能,mongosh完全可以满足需求。如果您在操作过程中遇到任何问题,请随时告诉我,我会尽力帮助您解决!复制分享编辑复制搜索 MongoDB replication setup guide根据您提供的搜索结果,以下是解决 MongoDB 错误代码。
2025-05-11 16:28:57
607
原创 MongoDB Change Stream:使用教程
Change Stream是基于MongoDB Oplog实现的,它提供推送实时增量数据的功能。Change Stream在oplog上开启一个tailable cursor来追踪所有复制集上的变更操作,并将这些变更事件推送给订阅的应用程序[2Change Stream的主要功能是推送实时的增量变更数据流。MongoDB上的所有DML操作(插入、删除、修改)以及部分DDL操作(如删表、删库)都会被记录在Change Stream中[3。
2025-05-11 15:39:40
982
原创 在 GetX 中,Get.put 和 Get.find 是用于管理依赖的两个重要方法。Get.put 用于注册依赖,而 Get.find 用于获取已经注册的依赖
Get.put:用于注册依赖(如控制器)。Get.find:用于获取已经注册的依赖。通过Get.put和Get.find,可以在整个应用中轻松地管理依赖,实现模块化和解耦。希望这个示例对你有帮助!复制分享没有注册怎么办复制如果在使用时没有注册控制器,会抛出一个错误,提示找不到对应的依赖。为了避免这种情况,你需要确保在使用Get.find之前已经通过Get.put注册了控制器。dart复制避免重复调用Get.put:确保每个控制器只被注册一次。使用:延迟注册控制器,避免重复注册。
2025-05-11 00:14:52
619
原创 Flutter 状态管理方案比较:Provider、GetX 与 Riverpod
本报告将深入比较三种流行的 Flutter 状态管理方案:Provider、GetX 和 Riverpod,分析它们的基本概念、实现原理、优缺点以及适用场景,帮助开发者在项目中做出更明智的选择。GetX 是另一个流行的 Flutter 状态管理库,它提供了一套更全面的解决方案,不仅包括状态管理,还包括路由管理、依赖注入和其他有用的特性。它提供了一种直观的方式来管理应用程序的状态,同时减少了样板代码。通过提供优越的测试和调试功能、更好的性能和更高的可扩展性,解决了 Provider 的一些限制。
2025-05-09 17:33:50
717
原创 使用 Flutter 和 Provider 实现的书籍 CRUD(创建、读取、更新、删除)示例
创建文件:dart复制运行以下命令生成适配器代码:bash复制是一种简单且强大的状态管理方式,特别适用于需要在多个组件之间共享和管理状态的场景。通过结合和Provider,可以轻松实现状态的全局共享和动态更新。
2025-05-09 17:32:43
668
原创 Flutter 使用 Provider 包来实现状态管理
这个示例展示了如何使用Provider包实现简单的状态管理:使用管理状态。使用提供状态。使用Consumer监听状态变化。使用获取状态并修改。希望这个示例对你有帮助!复制分享放在一个文件里复制以下是将上述代码整合到一个文件中的完整代码示例。这样可以直接复制并运行,方便理解和测试。dart复制// 计数器模型// 私有变量,存储计数器的值// 获取计数器的值// 增加计数器的值_count++;// 通知监听器,触发 UI 更新// 显示计数器的组件。
2025-05-05 11:54:15
552
原创 GetX框架在Flutter应用开发中的优缺点分析
GetX是一个轻量级且强大的状态管理框架,专为Flutter应用开发设计。它不仅仅是一个状态管理库,更像是一个微框架,集成了多种功能,包括状态管理、路由管理、依赖注入等[12GetX提供了一个简洁的API,旨在简化Flutter应用的开发流程。根据DhiWise的介绍,GetX是一个轻量级、快速且稳定的状态管理库,它是一个 sophisticated microframework,允许开发者创建高效的应用架构[15。
2025-05-05 11:32:57
880
原创 Flutter 响应式编程与 Provider 状态管理入门教程
在 Flutter 中,状态管理是处理应用程序中数据变化并确保 UI 及时更新的关键部分。随着应用程序变得越来越复杂,需要高效管理状态的方法来保持代码的可维护性和性能。Provider 是 Flutter 社区推荐的状态管理解决方案之一,因其轻量、简单、灵活而备受欢迎[17它是一个基于 InheritedWidget 的状态管理库,提供了一种简单而强大的方法来在应用程序中共享状态[19在本教程中,我们系统地介绍了 Flutter 的响应式编程模式和 Provider 状态管理。
2025-05-05 11:04:36
703
原创 GetX GetBuilder 教程:一步一步构建响应式UI
GetX 是一个专为 Flutter 设计的轻量级解决方案,结合了高性能状态管理、智能依赖注入和路由管理功能。它旨在简化 Flutter 应用的开发流程,使开发者能够专注于业务逻辑的实现,而无需过多关注底层实现细节。简化的 API 设计,减少样板代码高性能的状态管理智能的依赖注入机制简化的路由管理支持响应式编程GetBuilder 是 GetX 提供的一个核心组件,用于处理状态管理并简化 UI 的更新过程。
2025-04-27 13:29:26
408
原创 Flutter中使用GetX进行路由管理的全面指南
GetX是Flutter上的一个轻量且强大的解决方案,结合了高性能状态管理、智能依赖注入和路由管理功能。它旨在简化Flutter应用的开发流程,使开发者能够专注于业务逻辑的实现,而无需过多关注底层实现细节[13简洁的API设计,减少样板代码高性能的状态管理智能的依赖注入机制简化的路由管理支持响应式编程在main.dart中定义路由:dart复制runApp(GetPage(name: '/',],),GetPage(),GetPage(),],),在。
2025-04-27 12:22:54
912
原创 Flutter GetX 程序结构与传统 Flutter 程序结构的对比分析
Flutter GetX 是一个流行的轻量级状态管理和路由管理框架,它通过简化的架构帮助开发者更快地构建应用。GetX 通过内置的状态管理、依赖注入和路由系统,显著减少了 Flutter 应用的样板代码,提升了开发效率,但在大型项目中可能需要额外的架构设计来保持代码可维护性。GetX 的学习曲线较平缓,对于熟悉 Flutter 的开发者,只需掌握。flutter getx 程序结构与原本state的程序结构进行对比。Flutter GetX 程序结构与传统的。和控制器的使用即可快速上手。
2025-04-26 09:54:36
879
原创 2025 从零开始Flutter getX 0基础教程(3)
这个示例完整展示了如何使用 GetX 构建一个功能完备的可复用页面,包括数据获取、表单处理、状态管理和页面导航等核心功能。
2025-04-26 08:49:34
762
原创 2025 从零开始Flutter getX基础教程(2)
这样就完成了一个简单的不包含完整应用的 GetX 组件页面的编写,它可以很方便地集成到现有的 Flutter 项目中。以下是在不包含完整应用(即不包含。
2025-04-26 08:46:11
202
原创 2025从零开始Flutter get X 零基础教程(1)
下面是一个使用 GetX 状态管理库的简单示例,展示了计数器功能的实现。这个例子包含了状态定义、控制器和视图层的基本用法。getx-simple-exampleGetX 最简单示例。运行这个应用后,点击浮动按钮会触发控制器中的。运行这个应用后,点击浮动按钮会触发控制器中的。方法,更新计数状态并自动刷新 UI。方法,更新计数状态并自动刷新 UI。生成 lib/main.dart。
2025-04-26 08:42:30
261
原创 get_storage 和 Hive 都是 Flutter 中用于本地数据存储的解决方案
如果你的应用需要快速存储和读取少量简单数据,是一个不错的选择。如果你需要存储结构化数据、对象,或者对数据安全有较高要求,Hive更适合。复制重试分享get_storage 适合哪些类型的应用?Hive 如何支持 AES-256 加密?get_storage 的读写速度如何?随时@你想要的Kimi+ 使用各种能力已联网长思考 (k1.5)
2025-04-25 21:37:17
377
原创 5分钟做一个Python fastapi 图片和文件视频的服务
Python fastapi 做一个图片和文件视频的服务以下是一个使用 FastAPI 构建的简单图片、文件和视频服务的示例代码。该服务允许你上传文件,并提供文件下载的接口。fastapi-file-serviceFastAPI 图片和文件视频服务代码V1生成 file_service.py。
2025-04-24 22:03:22
823
原创 为 FastAPI 应用程序创建 Dockerfile 的步骤
以下是为 FastAPI 应用程序创建 Dockerfile 的详细步骤,用于构建 Docker 镜像并方便部署。
2025-04-24 21:40:27
874
原创 从零开始编写Python FastAPI项目
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,基于 Python 3.7+ 的类型提示。
2025-04-24 21:37:16
880
原创 AI在量化交易中的应用:模型选择与实践指南
量化交易是指采用定量的方法对交易进行分析,从而得出结论,指导交易的进行。大多数量化交易通过构建数学模型对价格、风险进行科学的分析与预测,从而制定具体的交易决策[2量化交易主要依靠计算机自动产生交易策略,通过建立数学模型来实现交易理念,并具有完整的评价体系。传统的投资方法主要有基本面分析法和技术分析法,而量化交易则更加依赖于数据和模型。量化交易者需要收集和整理大量的市场数据,包括价格、成交量、持仓量等,这些数据是构建交易模型的基础[0。
2025-04-24 20:50:21
1067
原创 量化交易中的模型选择:票期货市场的AI应用研究
在量化交易领域,特别是票期货市场,AI模型的应用已经变得越来越广泛。这些模型可以帮助交易者预测价格走势、识别市场模式,并做出更明智的交易决策。传统时间序列模型(如ARIMA、Prophet)深度学习模型(如LSTM、XGBoost)变换器(Transformer)架构模型(如Hugging Face的时间序列变换器)
2025-04-24 20:30:49
865
原创 强化学习在量化交易中的应用研究报告
本研究报告深入探讨了强化学习(Reinforcement Learning, RL)在量化交易领域的应用。强化学习作为一种机器学习范式,通过智能体与环境的交互学习最优策略,为量化交易提供了强大的工具。报告全面分析了强化学习在量化交易中的应用原理、技术框架、面临的挑战以及实际效果,为相关研究和实践提供了系统性的参考。量化交易是指在分析和交易金融市场时使用数学模型和数据驱动技术的方法。而强化学习是一种机器学习范式,其中智能体通过与环境交互来学习最优策略。
2025-04-24 18:05:32
743
原创 大语言模型在量化投资中的应用研究报告
大语言模型是一种能够理解和生成人类语言的人工智能系统。与传统的深度学习模型相比,大语言模型具有处理自然语言的卓越能力,能够从大量文本数据中学习并生成类似人类的文本。这种能力使大语言模型在金融领域具有广泛的应用前景。
2025-04-24 17:52:37
561
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人